www.tjgcgs88.cn-狠狠久久亚洲欧美专区不卡,久久精品国产99久久无毒不卡,噼里啪啦国语版在线观看,zσzσzσ女人极品另类

  • <strike id="qgi8o"><td id="qgi8o"></td></strike>
  • <ul id="qgi8o"><acronym id="qgi8o"></acronym></ul>
  • <li id="qgi8o"></li>
    <ul id="qgi8o"></ul>
    <strike id="qgi8o"><rt id="qgi8o"></rt></strike>
    <ul id="qgi8o"><center id="qgi8o"></center></ul>
  • <kbd id="qgi8o"></kbd>

    求大量高一數(shù)學(xué)難題(有答案,有解析)! 求一個(gè)高一數(shù)學(xué)必修一的難題 附答案

    必修1 第一章 集合測試

    一、選擇題(共12小題,每題5分,四個(gè)選項(xiàng)中只有一個(gè)符合要求)
    1.下列選項(xiàng)中元素的全體可以組成集合的是 ( )
    A.學(xué)校籃球水平較高的學(xué)生 B.校園中長的高大的樹木
    C.2007年所有的歐盟國家 D.中國經(jīng)濟(jì)發(fā)達(dá)的城市
    2.方程組 的解構(gòu)成的集合是 ( )
    A. B. 迄今為止最全,最適用的高一數(shù)學(xué)試題(必修1、4)
    C.(1,1) D.
    3.已知集合A={a,b,c},下列可以作為集合A的子集的是 ( )
    A. a B. {a,c} C. {a,e} D.{a,b,c,d}
    4.下列圖形中,表示 的是 ( )

    5.下列表述正確的是 ( )
    A. B. C. D.
    6、設(shè)集合A={x|x參加自由泳的運(yùn)動(dòng)員},B={x|x參加蛙泳的運(yùn)動(dòng)員},對(duì)于“既參
    加自由泳又參加蛙泳的運(yùn)動(dòng)員”用集合運(yùn)算表示為  ( )
    A.A∩B   B.A B  C.A∪B   D.A B
    7.集合A={x } ,B={ } ,C={ }
    又 則有 ( )
    A.(a+b) A B. (a+b) B C.(a+b) C D. (a+b) A、B、C任一個(gè)8.集合A={1,2,x},集合B={2,4,5},若 ={1,2,3,4,5},則x=( )
    A. 1 B. 3 C. 4 D. 5
    9.滿足條件{1,2,3} M {1,2,3,4,5,6}的集合M的個(gè)數(shù)是 ( )
    A. 8 B. 7 C. 6 D. 5

    10.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,
    6 },那么集合 { 2 ,7 ,8}是 ( )
    A. B. C. D.
    11.設(shè)集合 , ( )
    A. B. C. D.
    12. 如果集合A={x|ax2+2x+1=0}中只有一個(gè)元素,則a的值是 ( )
    A.0 B.0 或1 C.1 D.不能確定
    二、填空題(共4小題,每題4分,把答案填在題中橫線上)
    13.用描述法表示被3除余1的集合 .
    14.用適當(dāng)?shù)姆?hào)填空:
    (1) ; (2){1,2,3} N;
    (3){1} ; (4)0 .
    15.含有三個(gè)實(shí)數(shù)的集合既可表示成 ,又可表示成 ,則 .
    16.已知集合 , , 那么集合 , , .
    三、解答題(共4小題,共44分,解答應(yīng)寫出文字說明,證明過程或演算步驟)
    17. 已知集合 ,集合 ,若 ,求實(shí)數(shù)a的取值集合.

    18. 已知集合 ,集合 ,若滿足 ,求實(shí)數(shù)a的值.

    19. 已知方程 .
    (1)若方程的解集只有一個(gè)元素,求實(shí)數(shù)a,b滿足的關(guān)系式;
    (2)若方程的解集有兩個(gè)元素分別為1,3,求實(shí)數(shù)a,b的值

    20. 已知集合 , , ,若滿足 ,求實(shí)數(shù)a的取值范圍.

    必修1 函數(shù)的性質(zhì)

    一、選擇題:
    1.在區(qū)間(0,+∞)上不是增函數(shù)的函數(shù)是 ( )
    A.y=2x+1 B.y=3x2+1 C.y= D.y=2x2+x+1
    2.函數(shù)f(x)=4x2-mx+5在區(qū)間[-2,+∞]上是增函數(shù),在區(qū)間(-∞,-2)上是減函
    數(shù),則f(1)等于 ( )
    A.-7 B.1 C.17 D.25
    3.函數(shù)f(x)在區(qū)間(-2,3)上是增函數(shù),則y=f(x+5)的遞增區(qū)間是 ( )
    A.(3,8) B.(-7,-2) C.(-2,3) D.(0,5)
    4.函數(shù)f(x)= 在區(qū)間(-2,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是 ( )
    A.(0, ) B.( ,+∞) C.(-2,+∞) D.(-∞,-1)∪(1,+∞)
    5.函數(shù)f(x)在區(qū)間[a,b]上單調(diào),且f(a)f(b)<0,則方程f(x)=0在區(qū)間[a,b]內(nèi) ( )
    A.至少有一實(shí)根 B.至多有一實(shí)根
    C.沒有實(shí)根 D.必有唯一的實(shí)根
    6.若 滿足 ,則 的值是 ( )
    5 6
    7.若集合 ,且 ,則實(shí)數(shù) 的集合( )

    8.已知定義域?yàn)镽的函數(shù)f(x)在區(qū)間(-∞,5)上單調(diào)遞減,對(duì)任意實(shí)數(shù)t,都有f(5+t)
    =f(5-t),那么下列式子一定成立的是 ( )
    A.f(-1)<f(9)<f(13) B.f(13)<f(9)<f(-1)
    C.f(9)<f(-1)<f(13) D.f(13)<f(-1)<f(9)
    9.函數(shù) 的遞增區(qū)間依次是 ( )
    A. B.
    C. D
    10.若函數(shù) 在區(qū)間 上是減函數(shù),則實(shí)數(shù) 的取值范圍 ( )
    A.a(chǎn)≤3 B.a(chǎn)≥-3 C.a(chǎn)≤5 D.a(chǎn)≥3

    11. 函數(shù) ,則 (  )

    12.已知定義在 上的偶函數(shù) 滿足 ,且在區(qū)間 上是減函數(shù)則 ( )
    A. B.
    C. D.
    .二、填空題:
    13.函數(shù)y=(x-1)-2的減區(qū)間是___ _.
    14.函數(shù)f(x)=2x2-mx+3,當(dāng)x∈-2,+時(shí)是增函數(shù),當(dāng)x∈-,-2時(shí)是減函

    數(shù),則f(1)= 。
    15. 若函數(shù) 是偶函數(shù),則 的遞減區(qū)間是_____________.
    16.函數(shù)f(x) = ax2+4(a+1)x-3在[2,+∞]上遞減,則a的取值范圍是__ .

    三、解答題:(解答應(yīng)寫出文字說明,證明過程或演算步驟.)
    17.證明函數(shù)f(x)=2-xx+2 在(-2,+)上是增函數(shù)。

    18.證明函數(shù)f(x)= 在[3,5]上單調(diào)遞減,并求函數(shù)在[3,5]的最大值和最小值。

    19. 已知函數(shù)
    ⑴ 判斷函數(shù) 的單調(diào)性,并證明;
    ⑵ 求函數(shù) 的最大值和最小值.

    20.已知函數(shù) 是定義域在 上的偶函數(shù),且在區(qū)間 上單調(diào)遞減,求滿足
    的 的集合.

    必修1 函數(shù)測試題

    一、選擇題:(本題共12小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,
    只有一項(xiàng)是符合題目要求的)
    1.函數(shù) 的定義域?yàn)? ( )
    A B C D
    2.下列各組函數(shù)表示同一函數(shù)的是 ( )
    A. B.
    C. D.
    3.函數(shù) 的值域是 ( )
    A 0,2,3 B    C    D
    4.已知 ,則f(3)為 ( )
    A 2 B 3 C 4 D 5
    5.二次函數(shù) 中, ,則函數(shù)的零點(diǎn)個(gè)數(shù)是 ( )
    A 0個(gè) B 1個(gè) C 2個(gè) D 無法確定
    6.函數(shù) 在區(qū)間 上是減少的,則實(shí)數(shù) 的取值范( )
    A B C D
    7.某學(xué)生離家去學(xué)校,由于怕遲到,一開始就跑步,等跑累了再步行走完余下的路程,
    若以縱軸表示離家的距離,橫軸表示離家后的時(shí)間,則下列四個(gè)圖形中,符合該學(xué)生
    走法的是 ( )

    8.函數(shù)f(x)=|x|+1的圖象是 ( )

    9.已知函數(shù) 定義域是 ,則 的定義域是 ( )
    A. B. C. D.
    10.函數(shù) 在區(qū)間 上遞減,則實(shí)數(shù) 的取值范圍是( )
    A. B. C. D.
    11.若函數(shù) 為偶函數(shù),則 的值是 ( )
    A. B. C. D.
    12.函數(shù) 的值域是 ( )
    A. B. C. D.
    二、填空題(共4小題,每題4分,共16分,把答案填在題中橫線上)
    13.函數(shù) 的定義域?yàn)? ;
    14.若
    15.若函數(shù) ,則 =
    16.函數(shù) 上的最大值是 ,最小值是 .
    三、解答題(共4小題,共44分,解答應(yīng)寫出文字說明,證明過程或演算步驟)
    17.求下列函數(shù)的定義域:
    (1)y=x+1 x+2 (2)y=1x+3 +-x +x+4
    (3)y=16-5x-x2 (4)y=2x-1 x-1 +(5x-4)0

    18.指出下列函數(shù)的定義域、值域、單調(diào)區(qū)間及在單調(diào)區(qū)間上的單調(diào)性。
    (1)y=x2x (2)y=x+xx

    19.對(duì)于二次函數(shù) ,
    (1)指出圖像的開口方向、對(duì)稱軸方程、頂點(diǎn)坐標(biāo);
    (2)求函數(shù)的最大值或最小值;
    (3)分析函數(shù)的單調(diào)性。

    20.已知A= ,B= .
    (Ⅰ)若 ,求 的取值范圍;
    (Ⅱ)若 ,求 的取值范圍.

    必修1 第二章 基本初等函數(shù)(1)

    一、選擇題:
    1. 的值 (    )
    A B 8 C -24 D -8
    2.函數(shù) 的定義域?yàn)? (    )
    A B     C D
    3.下列函數(shù)中,在 上單調(diào)遞增的是 ( )
    A B C D
    4.函數(shù) 與 的圖象 ( )
    A 關(guān)于 軸對(duì)稱 B 關(guān)于 軸對(duì)稱
    C 關(guān)于原點(diǎn)對(duì)稱 D 關(guān)于直線 對(duì)稱
    5.已知 ,那么 用 表示為 ( )
    A B C D
    6.已知 , ,則 ( )
    A B C D
    7.已知函數(shù)f(x)=2x,則f(1—x)的圖象為 ( )

    A B C D

    8.有以下四個(gè)結(jié)論 ① lg(lg10)=0 ② lg(lne)=0 ③若10=lgx,則x=10 ④ 若e=lnx,則
    x=e2, 其中正確的是 ( )
    A. ① ③ B.② ④ C. ① ② D. ③ ④
    9.若y=log56•log67•log78•log89•log910,則有 ( )
    A. y (0 , 1) B . y (1 , 2 ) C. y (2 , 3 ) D. y=1
    10.已知f(x)=|lgx|,則f( )、f( )、f(2) 大小關(guān)系為 ( )

    A. f(2)> f( )>f( ) B. f( )>f( )>f(2)
    C. f(2)> f( )>f( ) D. f( )>f( )>f(2)
    11.若f(x)是偶函數(shù),它在 上是減函數(shù),且f(lgx)>f(1),則x的取值范圍是( )
    A. ( ,1) B. (0, ) (1, ) C. ( ,10) D. (0,1) (10, )
    12.若a、b是任意實(shí)數(shù),且a>b,則 ( )
    A. a2>b2 B. <1 C. >0 D. <
    二、填空題:
    13. 當(dāng)x [-1,1]時(shí),函數(shù)f(x)=3x-2的值域?yàn)?
    14.已知函數(shù) 則 _________.
    15.已知 在 上是減函數(shù),則 的取值范圍是_________
    16.若定義域?yàn)镽的偶函數(shù)f(x)在[0,+∞)上是增函數(shù),且f( )=0,則不等式
    f(log4x)>0的解集是______________.

    三、解答題:
    17.已知函數(shù)
    (1)作出其圖象;
    (2)由圖象指出單調(diào)區(qū)間;
    (3)由圖象指出當(dāng) 取何值時(shí)函數(shù)有最小值,最小值為多少?

    18. 已知f(x)=log a (a>0, 且a≠1)
    (1)求f(x)的定義域
    (2)求使 f(x)>0的x的取值范圍.

    19. 已知函數(shù) 在區(qū)間[1,7]上的最大值比最小值大 ,求a的值。

    20.已知
    (1)設(shè) ,求 的最大值與最小值;
    (2)求 的最大值與最小值;

    必修1 第二章 基本初等函數(shù)(2)
    一、選擇題:
    1、函數(shù)y=log x+3(x≥1)的值域是 ( )
    A. B.(3,+∞) C. D.(-∞,+∞)
    2、已知 ,則 = ( )
    A、100 B、 C、 D、2
    3、已知 ,那么 用 表示是 ( )
    A、 B、 C、 D、
    4.已知函數(shù) 在區(qū)間 上連續(xù)不斷,且 ,則下列說法正
    確的是 ( )
    A.函數(shù) 在區(qū)間 或者 上有一個(gè)零點(diǎn)
    B.函數(shù) 在區(qū)間 、 上各有一個(gè)零點(diǎn)
    C.函數(shù) 在區(qū)間 上最多有兩個(gè)零點(diǎn)
    D.函數(shù) 在區(qū)間 上有可能有2006個(gè)零點(diǎn)
    5.設(shè) ,用二分法求方程 內(nèi)近似解的過程
    中取區(qū)間中點(diǎn) ,那么下一個(gè)有根區(qū)間為 ( )
    A.(1,2) B.(2,3) C.(1,2)或(2,3) D.不能確定
    6. 函數(shù) 的圖象過定點(diǎn) ( )
    A.(1,2) B.(2,1) C.(-2,1) D.(-1,1)
    7. 設(shè) ,則a、b的大小關(guān)系是 ( )
    A.b<a<1 B. a<b<1 C. 1<b<a D. 1<a<b
    8. 下列函數(shù)中,值域?yàn)椋?,+∞)的函數(shù)是 ( )
    A. B. C. D.
    9.方程 的三根 , , ,其中 < < ,則 所在的區(qū)間為 ( )
    A . B . ( 0 , 1 ) C . ( 1 , ) D . ( , 2 )
    10.值域是(0,+∞)的函數(shù)是 ( )
    A、 B、 C、 D、
    11.函數(shù)y= | lg(x-1)| 的圖象是 ( )

    12.函數(shù) 的單調(diào)遞增區(qū)間是 ( )
    A、 B、 C、(0,+∞) D、

    二、填空題:
    13.計(jì)算: = .
    14.已知冪函數(shù)的圖像經(jīng)過點(diǎn)(2,32)則它的解析式是 .
    15.函數(shù) 的定義域是 .
    16.函數(shù) 的單調(diào)遞減區(qū)間是_______________.
    三、解答題

    17.求下列函數(shù)的定義域:
    (1) (2)

    18. 已知函數(shù) ,(1)求 的定義域;
    (2)使 的 的取值范圍.

    19. 求函數(shù)y=3 的定義域、值域和單調(diào)區(qū)間.

    20. 若0≤x≤2,求函數(shù)y= 的最大值和最小值

    一、選擇題
    1.若集合 ,下列關(guān)系式中成立的為( )
    A. B.
    C. D.
    2. 名同學(xué)參加跳遠(yuǎn)和鉛球測驗(yàn),跳遠(yuǎn)和鉛球測驗(yàn)成績分別為及格 人和 人,
    項(xiàng)測驗(yàn)成績均不及格的有 人, 項(xiàng)測驗(yàn)成績都及格的人數(shù)是( )
    A. B.
    C. D.
    3.已知集合 則實(shí)數(shù) 的取值范圍是( )
    A. B.
    C. D.
    4.下列說法中,正確的是( )
    A. 任何一個(gè)集合必有兩個(gè)子集;
    B. 若 則 中至少有一個(gè)為
    C. 任何集合必有一個(gè)真子集;
    D. 若 為全集,且 則
    5.若 為全集,下面三個(gè)命題中真命題的個(gè)數(shù)是( )
    (1)若
    (2)若
    (3)若
    A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
    6.設(shè)集合 , ,則( )
    A. B.
    C. D.
    7.設(shè)集合 ,則集合 ( )
    A. B. C. D.

    上學(xué)科網(wǎng)搜一下

    高一數(shù)學(xué) 難題 在線等 急急急急急!!!(要有完整的解題步驟)
    設(shè)共切線方程為y=kx+b 圓(x-2)^2+y^2=4到直線的距離為r1=|2k+b|\/√(k^2+1)=2 圓(x-4)^2+y^2=1到直線的距離為r2=|4k+b|\/√(k^2+1)=1 !!!畫圖可知:可大概畫出兩條符合條件的公切線,連接切點(diǎn)及對(duì)應(yīng)的圓的圓心。可由相似三角形知(兩個(gè)直角三角形),所求公切線必過...

    數(shù)學(xué)10道燒腦題及答案你能答對(duì)幾道
    5. 答案:2的平方加3的平方等于4加9等于13;7的平方加4的平方等于49加16等于65;最后一個(gè)當(dāng)然是1的平方加5的平方等于1加25等于26。初中數(shù)學(xué)趣味燒腦題:1. 洪水淹橋:黃河上有2座橋,一高一低,這2座橋都被接連而來的3次洪水淹沒了。高橋被淹沒了3次,低橋反只被淹了1次,這是為什么?2...

    高一數(shù)學(xué)(難題)
    (1) 因a>0 b>1 f(x)=-b(x-a\/2b)2+a2\/4b 為開口向下的拋物線,對(duì)稱軸x=a\/2b>0 所以 a\/2b<1 a<2b時(shí) f(x)最大=f(a\/2b)=a2\/4b a\/2b>1時(shí) a>2b時(shí) f(x)最大=f(1)=a-b ①對(duì)任意x∈[0,1],都有|f(x)|<=1 即-1≤f(x)≤1 則必需-1...

    高一數(shù)學(xué)難題:f(x)+f(x-1\/x)=1+x (x不等于1和0) 求f(x)
    用1\/(1-x)一直替換x 解f(x)f(1\/(1-x))+f(x)=1\/(1-x)+1 ①第一次代換后結(jié)果 f(1\/(1-x))+f(1-1\/x)=2-1\/x ②第二次代換后結(jié)果 f(1-1\/x)+f(x)=x+1 ③ 第三次代換后結(jié)果 解f(x)=(1\/2)(x+1\/x+1\/(1-x))理由就是用消去法求f(x)①-②+③=x+1\/x+1...

    高一數(shù)學(xué) 難題 在線等 急急急急急!!!(要有完整的解題步驟)
    設(shè)所求直線方程為x\/a+y\/a=1即x+y-a=0 圓心到直線的距離為半徑r=|0+2-a|\/√2=1 解得a=2±√2 所以直線方程為x+y-2+√2=0或x+y-2-√2=0

    高一數(shù)學(xué)難題
    解:因?yàn)椋篴>1>b>0,k>0;所以f (x)=Ln(a^x-k*b^x)(在(0,+∞)為單調(diào)遞增函數(shù)。故而有f(0)=0得k=1;使得f(x)在(1,+∞)上取正值,且f(3)=ln4則得到f(1)=0即a-b=1從f(3)=ln4得a^3-b^3=4聯(lián)立方程就可以解出來a,b了.

    高一數(shù)學(xué)難題已知函數(shù)f(x)=log底a|x|(a>0,且f(x^2+4x+8)>f(-π...
    一:已知函數(shù)f(x)=log底a|x|(a>0,且f(x^2+4x+8)>f(-π).(1)寫出函數(shù)f(x)的單調(diào)區(qū)間,并加以證明;(2)若方程4^a-m.2^a+1=5=0有兩個(gè)不相等的實(shí)根,求m的取值 (1)解析:∵函數(shù)f(x)=log(a,|x|)(a>0, a≠1),∴其定義域?yàn)閤≠0 當(dāng)0<a<1時(shí),當(dāng)x<0時(shí),f(x)=...

    高一數(shù)學(xué)函數(shù)難題
    你參考看看~

    高一數(shù)學(xué)難題求詳細(xì)解答!在線等!!!
    由關(guān)于x的不等式可以知道,ax>b,而由后面的解集可以知道,a為負(fù)數(shù)(這不用詳細(xì)解釋吧?),所以x0,而a又是負(fù)數(shù),所以就可以得到答案是B.求最佳答案,謝謝

    求十道數(shù)學(xué)題(高一的難題,關(guān)于an的)
    2、設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意的正整數(shù)n,都有an=5Sn+1成立,記bn=(4+an)\/(1-an)(n∈N+),(1) 求數(shù)列{an}與數(shù)列{bn}的通項(xiàng)公式 (2) 設(shè)數(shù)列{bn}的前n項(xiàng)和為Rn,是否存在正整數(shù)k,使得Rn≥4k成立?若存在,找出一個(gè)正整數(shù)k,若不存在,請(qǐng)說明理由 (3) 記Cn=b(2n...

    相關(guān)評(píng)說:

  • 姬壯17665907938: 高一數(shù)學(xué)難題解答
    聞喜縣伺服: ______ f(-1)=f(3), 1-b+1=9+3b+1 b=-2 x^2-2x+1>0 (x-1)^2>0 x不等于1
  • 姬壯17665907938: 一高一數(shù)學(xué)難題
    聞喜縣伺服: ______ 解:1.f(x0)=loga(x0-1)=y0 ①式 2y0=g(2x0) ②式 ①式代入②式有:2y0=g(2x0)=2loga(x0-1) ③式 有:y0=(1/2)g(2x0)=loga(x0-1) y0=(1/2)g(x0)=loga[(x0/2)-1],即y=loga[(x/2)-1] 2.③式有:g(x)=2loga[(x/2)-1] F=f(x)-g(x)=loga(x-1)-2loga[(x/2)-1]>0 得:...
  • 姬壯17665907938: 高一數(shù)學(xué)難題
    聞喜縣伺服: ______ 設(shè)f(x)=kx+b(k≠0),2f(1)+3f(2)=3,2f(-1)-f(0)=-1分別代入2(k+b)+3(2k+b)=3,2(-k+b)-b=-1;整理得b=-1/9,k=4/9,所以f(x)=4/9x-1/9
  • 姬壯17665907938: 急求高一數(shù)學(xué)問題答案
    聞喜縣伺服: ______ 對(duì)稱軸x=-2a/2a=-1 當(dāng)a<0時(shí),x=-1處取的最大值.所以4=a-2a+1,a=-3<0滿足條件 當(dāng)a>0時(shí),x=2處(因?yàn)樗x對(duì)稱軸遠(yuǎn)一些)取得最大值.所以4=4a+4a+1,a=3/8>滿足條件 所以a=-3或者a=3/8
  • 姬壯17665907938: 尋高一能做的經(jīng)典數(shù)學(xué)難題...最好是考察智力的
    聞喜縣伺服: ______ 有五個(gè)不同國籍的人,居住在五種不同顏色的房子里,各有不同的寵物,愛喝不同的飲料,抽不同品牌的香煙.根據(jù)一些支離破碎的條件,大家能找出誰喝水,誰養(yǎng)斑馬嗎? 這是一到20世紀(jì)60年代著名的世界難題,下面是已知條件. 1.英國人...
  • 姬壯17665907938: 一個(gè)高一數(shù)學(xué)難題
    聞喜縣伺服: ______ 答案:1*100+2*99+3*98+……+99*2+100*1 設(shè)S=1*2+2*3+3*4+……n*(n+1) 則3S=1*2*3+2*3*3+3*4*3+4*5*3+……n*(n+1)*3 =1*2(3-0)+2*3(4-1)+3*4(5-2)+……n(n+1)[n+2-(n-1)] =1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+……+n(n+1)(n+2)-(n-1)n(n+1) =n(n+1)(n+2), 帶入即可!!!! 思路:M包含于A,如果含有元素1,則一共是有100個(gè),即1*100 如果還有2,除去{1}下的含2的一共有99個(gè)即2*99 下面的以此類推!!!!
  • 姬壯17665907938: 幾道高一數(shù)學(xué)超難題 -
    聞喜縣伺服: ______ 1.題目寫錯(cuò)了吧?應(yīng)該如下: y=(2x+5)/(x+2)=2+1/(x+2) 即y-2=1/(x+2) 所以把y=(2x+5)/(x+2)的圖像上的所有點(diǎn)先縱坐標(biāo)保持不變,橫坐標(biāo)沿x軸向右移動(dòng)2個(gè)單位,得到y(tǒng)-2=1/x的圖象,然后把y-2=1/x的圖象上的所有點(diǎn)再橫橫坐標(biāo)保持不變,縱坐標(biāo)...
  • 姬壯17665907938: 求解一道高一數(shù)學(xué)難題
    聞喜縣伺服: ______ 1)f(ab)=f(a)+f(b) a=b=1時(shí)有f(1)=2f(1) f(1)=0(與x>0時(shí) f(x)>0矛盾,所以這樣的函數(shù)不存在.)如果條件是 x>1時(shí),f(x)>0則有f(1)=0 f(-1*-1)=f(-1)+f(-1) f(-1)=0 f(-1*a)=f(a)+f(b)=f(a)+f(-1)=f(a) f(-a)=f(a)是偶函數(shù) 2)f(a*1/a)=f(a)+f(1/a) f(1/a)=-f(a) x1>x2>0 f(x...
  • 姬壯17665907938: 高一數(shù)學(xué)難題!+分! -
    聞喜縣伺服: ______ b的最小值為6, 我有幾道難題! 1 已知a1(1是序數(shù),不是方,下同)+a2+... +an=n3(n的3次方) 求1/a2-1+1/a3-1+...+1/a100-1 的值 2 已知代數(shù)式,當(dāng)時(shí)的值分別為1-,2,2,而且不等于0,問當(dāng)時(shí)該代數(shù)式的值是多少? 3 有理數(shù)均不為0,且設(shè)試求代數(shù)式2000之值. 4 已知a,b為整數(shù),如果n=10a+b,請(qǐng)你證明:17\n (答案為實(shí)數(shù)) 這啼夠挑戰(zhàn)吧!我想了三天呢!! 交個(gè)朋友!!
  • 姬壯17665907938: 高一數(shù)學(xué)難題
    聞喜縣伺服: ______ 題目說明了 是存在T∈R 故求的t∈[-4,0] 也不和題意矛盾
  • 狠狠色噜噜狠狠狠狠色综合久AV| 国产精品婷婷久久久久久| 免费的看片软件下载| 性色av无码专区一区二区| 欧美日韩人妻精品一区二区三区| 免费AV一区二区三区无码| 国产日韩精品一区二区三区在线| 影视无码精品久久| 久久精品国产www456c0m| 久久狠狠高潮亚洲精品|