www.tjgcgs88.cn-狠狠久久亚洲欧美专区不卡,久久精品国产99久久无毒不卡,噼里啪啦国语版在线观看,zσzσzσ女人极品另类

  • <strike id="qgi8o"><td id="qgi8o"></td></strike>
  • <ul id="qgi8o"><acronym id="qgi8o"></acronym></ul>
  • <li id="qgi8o"></li>
    <ul id="qgi8o"></ul>
    <strike id="qgi8o"><rt id="qgi8o"></rt></strike>
    <ul id="qgi8o"><center id="qgi8o"></center></ul>
  • <kbd id="qgi8o"></kbd>

    limx→0 (cosx+xsinx) lim x→0 ((xcosx-sinx)/xsinx)

    原式=limx→0(1+xtanx)^(1/x^2)(Cosx)^(1/x^2)
    =limx→0(1+x^2)^(1/x^2) (1+Cosx-1)^{[1/(Cosx-1)][(Cosx-1)/x^2]}
    =elimx→0e^[(Cosx-1)/x^2]
    limx→0e^[(Cosx-1)/x^2]=limx→0(-sinx)/2x=-1/2
    所以,原式=exe^(-1/2)=e^(1/2)

    我來(lái)答:高中代數(shù)。先看cosx+xsinx,當(dāng)x趨近于零時(shí),cosx是1,而xsinx為0,底數(shù)是1,再看指數(shù):1/x^2,x趨近于零,1/x趨近于無(wú)窮大,1/x^2,更趨近于無(wú)窮大了,所以是求1的無(wú)窮次方,還是1呀

    相關(guān)評(píng)說(shuō):

  • 盧炒17768926791: limx→0(cosx) 1ln(1+x2)= - ----- -
    瑞安市電動(dòng): ______ =e, 而 , 故 原式=e? 1 2 = 1 e . 故答案為:
  • 盧炒17768926791: 求limx→0(1x - cotx). -
    瑞安市電動(dòng): ______[答案] lim x→0( 1 x-cotx) = lim x→0( 1 x- cosx sinx) = lim x→0( sinx-xcosx xsinx) = lim x→0 cosx-cosx+xsinx sinx+xcosx = lim x→0 xsinx sinx+xcosx = lim x→0 sinx+xcosx cosx+cosx-xsinx=0.
  • 盧炒17768926791: limx→0(㏑cosx/tanx2) -
    瑞安市電動(dòng): ______ limx→0(㏑cosx/tanx2)=limx→0(㏑(1+cosx-1)/x2)=limx→0(cosx-1)/x2=limx→0(-x2/2)/x2=-1/2
  • 盧炒17768926791: limx趨近于0(x - sinx)/x十sinx -
    瑞安市電動(dòng): ______ lim(x->0) (x-sinx)/(x+sinx)=lim(x->0) (1-cosx)/(1+cosx)=(1-1)/(1+1)=0
  • 盧炒17768926791: limx→0∫(x,0)sintdt/5x^2怎么做 -
    瑞安市電動(dòng): ______ limx→0∫(x,0)sintdt/5x^2=limx→0【-cosx-1】/5x^2=imx→0-【cosx+1】/5x^2=imx→0-【2sin^(x/2)】/5x^2=-1/10
  • 盧炒17768926791: limx→0 (cosx)^((cosx)^2) -
    瑞安市電動(dòng): ______[答案] 當(dāng)x趨于0時(shí); lim(cosx)^((cosx)^2) =lim e^ln[(cosx)^((cosx)^2)] =lim e^[(cosx)^2*ln cosx] =e^lim[(cosx)^2*ln cosx] =e^0 =1
  • 盧炒17768926791: 求limx→0(1/x^2 - cot^2x)的詳細(xì)步驟 -
    瑞安市電動(dòng): ______ limx→0(1/x^2-cot^2x) 這題是無(wú)窮-無(wú)窮型 一般用羅比達(dá)法則或者泰勒公式 limx→0[((sinx)^2-x^2(cosx)^2)/x^2(sinx)^2] =limx→0[(2cosxsinx-2x(cosx)^2-x^2*2cosxsinx)]/(x^2*2cosxsinx)+2x(cosx)^2) =limx→0(sinx-x-sinx*x^2)/(x^2sinx*+x) =limx→0(cosx-1-x^2-2xsinx)/(2xsinx+x^2+1) =0
  • 盧炒17768926791: 求極限limx→0 (tanx - sinx)/x - sinx -
    瑞安市電動(dòng): ______[答案] limx→0 (tanx-sinx)/(x-sinx) =limx→0 sinx(1-cosx)/(x-sinx)cosx =limx→0 x(x^2/2)/(x-sinx) =limx→0 (3/2)x^2/(1-cosx) =limx→0 (3/2)x^2/(x^2/2)=3
  • 盧炒17768926791: limx→01x(1x - cotx). -
    瑞安市電動(dòng): ______[答案] lim x→0 1 x( 1 x-cotx)= lim x→0 1 x( 1 x- cosx sinx)= lim x→0 1 x? sinx-xcosx xsinx= lim x→0 sinx-xcosx x2sinx = lim x→0 sinx-xcosx x3= lim x→0 cosx-cosx+xsinx 3x2= lim x→0 xsinx 3x2= lim x→0 sinx 3x= 1 3.
  • 盧炒17768926791: limx→0+[∫(0→x^2)t^(3/2)dt]/[∫(0→x)t(t - sint)dt] -
    瑞安市電動(dòng): ______ 答: lim ( x→0+) [ ∫(0→x^2) t^(3/2)dt] / [ ∫(0→x)t(t-sint)dt ] (0---0型可導(dǎo)用洛必達(dá)法則) =lim (x→0+) [ (x^2)^(3/2)*(x^2)' ] / [ x(x-sinx) ] =lim(x→0+) (2x^4) / [x(x-sinx)] =lim(x→0+) 2(x^3) /(x-sinx) 再次應(yīng)用洛必達(dá)法則 =lim(x→0+) 6(x^2) /(1-cosx) 再次應(yīng)用 =lim(x→0+) 12x/(sinx) =12
  • 一级毛片短视频| 日本欧美强乱视频在线| 久久久久精品国产四虎1| 3d动漫精品啪啪一区二区免费| 大师兄影视大全免费观看电视剧| 中文字幕在线播放| 久久午夜夜伦鲁鲁片无码免费| 天天做天天摸天天爽天天爱| 国产真实乱子伦精品视频| 久久精品国产亚洲a|