已知函數(shù)f(x)=根號3 sinwx +coswx (w>0) ,y=f(x)的圖象與直線y=2的兩個相鄰交點的距離等于π。 已知函數(shù)f(x)=根號3sinwx-coswx(w>0)的圖...
f(x)=根3sinwx+coswx=2sin(wx+π/6),所以最大值是2
.y=f(x)的圖像與直線y=2的兩個相鄰交點的距離等于派
你畫個圖就知道,T=派
這個距離就是告訴你周期呢,兩個挨著的最大值之間不就是一個周期么
藤芬15847839934: 已知函數(shù)f(x)=根號3 sinwx +coswx (w>0) ,y=f(x)的圖象與直線y=2的兩個相鄰交點的距離等于π.怎樣計算T 距離有什么用? -
秀英區(qū)棘輪: ______[答案] f(x)=根3sinwx+coswx=2sin(wx+π/6),所以最大值是2 .y=f(x)的圖像與直線y=2的兩個相鄰交點的距離等于派 你畫個圖就知道,T=派 這個距離就是告訴你周期呢,兩個挨著的最大值之間不就是一個周期么
藤芬15847839934: 已知函數(shù)f(x)=根號3sinwx+cos(wx+π/3)+cos(wx - π/3),x∈R(其中w大于0) -
秀英區(qū)棘輪: ______ 值域-2到2,遞減區(qū)間為π/24到7π/24的閉區(qū)間 f(x)=根號3sinwx+cos(wx+π/3)+cos(wx-π/3)=根號3sinwx+coswx=2sin(wx+π/3),所以值域為-2到2,2π/w=π/2,w=4,f(x)=2sin(4x+π/3),當X屬于(0,π/2)時,4x+π/3在π/3到7π/3之間,f(x)的單調(diào)遞減區(qū)間為4x+π/3大于π/2小于3π/2,固遞減區(qū)間為π/24到7π/24的閉區(qū)間
藤芬15847839934: 已知函數(shù)f(x)=(根號3sinwx+coswx) coswx - 1/2 (w>0) 的最小正周期為4π.求f(x)的單調(diào)遞增區(qū)間 -
秀英區(qū)棘輪: ______[答案] f(x)=(√3sinwx+coswx)coswx-1/2=√3sinwxcoswx+cos2wx-1/2=√3/2(2sinwxcoswx)+1/2(2cos2wx-1)=√3/2sin(2wx)+1/2cos(2wx0=sin(2wx+π/6)∴2π/(2w)=4π ∴w=1/2∴f(x)=sin(x+π/6)∴當...
藤芬15847839934: 已知函數(shù)f(x)=根號3 sinwx+cos(wx+π/3)+cos(wx - π/3),w>0.求函數(shù)f(x)的值域,若 -
秀英區(qū)棘輪: ______ 1)∵cos(wx+π/3)+cos(wx-π/3)=coswxcosπ/3-sinwxsinπ/3+coswxcosπ/3+sinwxsinπ/3=coswx f(x)=根號3 sinwx+cos(wx+π/3)+cos(wx-π/3)=√3sinwx+coswx=2sin(wx+π/6) 函數(shù)f(x)的值域y∈[-2,2]2)若函數(shù)f(x)的最小正周期為π/2,則2π/w=π/2,∴w=4 f(x)=2sin(4x+π/6)0x+π/6=t, f(t)=2sint單調(diào)遞減區(qū)間 π/2π/2f(x)的單調(diào)遞減區(qū)間是[π/12 , π/3]
藤芬15847839934: 已知函數(shù)f(x)=根號3sinx/2cosx/2 - cos2x/2+1/2,x屬于[0,π/2]f(x)跟號3/3求cosx值 -
秀英區(qū)棘輪: ______[答案] f(x)=√3sinx/2cosx/2-cos2x/2+1/2 =√3/2sinx-1/2(1+cosx)+1/2 =√3/2sinx-1/2cosx =sin(x- π/6) f(x)=sin(x- π/6) x屬于[0,π/2] x- π/6屬于[- π/6,π/3] sin(x- π/6)=√3/3 cos(x- π/6)=2√2/3 cosx=cos[(x- π/6)+π/6]=cos(x- π/6)cosπ/6+sin(x- π/6)sinπ/6 =2√2/3*√3/2-√...
藤芬15847839934: 已知函數(shù)f(x)=(根號3sinwx+coswx) coswx - 1/2 (w>0) 的最小正周期為4π. 求f(x)的單調(diào)遞增區(qū)間 -
秀英區(qū)棘輪: ______ f(x)=(√3sinwx+coswx)coswx-1/2 =√3sinwxcoswx+cos2wx-1/2 =√3/2(2sinwxcoswx)+1/2(2cos2wx-1) =√3/2sin(2wx)+1/2cos(2wx0 =sin(2wx+π/6) ∴2π/(2w)=4π ∴w=1/2 ∴f(x)=sin(x+π/6) ∴當x+π/6∈[2kπ-π/2,2kπ+π/2]即x∈[2kπ-2π/3,2kπ+π/3]時,f(x)單調(diào)遞增 當x+π/6∈[2kπ+π/2,2kπ+3π/2]即x∈[2kπ+π/3,2kπ+4π/3]時,f(x)單調(diào)遞減
藤芬15847839934: 已知函數(shù)f(x)=根號3 sin(2x+Ф)若f(x)=根號3,, -
秀英區(qū)棘輪: ______ 若f(x)=根號3 2x+Ф=π/2+2kπ f(x+5π/6)=根號3sin(2x+5π/3+Ф)=根號3sin(π/2+2kπ+5π/3)=根號3(π/2+5π/3)=根號3sin(2π+π/6)=根號3sin(π/6)=根號3/2 f(x+π/12)=根號3sin(2x+π/6+Ф)=根號3sin(π/2+2kπ+π/6)=根號3sin(π/2+π/6)=根號3cos(π/6)=3/2 f(x+5π/6)
藤芬15847839934: 有關(guān)高一三角函數(shù)已知函數(shù)f(x)=(根號3)*sin(ωx+φ) - cos(ωx+φ) (0 -
秀英區(qū)棘輪: ______[答案] f(x)=√3sin(ωx+φ)- cos(ωx+φ) =2(√3/2sin(ωx+φ)-1/2 cos(ωx+φ) )=2(cosπ/6sin(ωx+φ)-sinπ/6cos(ωx+φ) ) =2sin(ωx+φ-π/6) 這個函數(shù)是偶函數(shù),則φ-π/6=π/2的奇數(shù)倍,又因為0
藤芬15847839934: 已知函數(shù)f(x)=2根號3*sin(x 四分之派)·cos(x 四分之派) - sin(2x 3派)的最小正周期 -
秀英區(qū)棘輪: ______[答案] f(x)=2√3*sin(x+π/4)·cos(x+π/4)-sin(2x+3π) =√3sin(2x+π/2)+sin2x =√3cos2x+sin2x =2(cosπ/6·cos2x+sinπ/6·sin2x) =2cos(2x-π/6) ∴T=2π/2=π
藤芬15847839934: 已知函數(shù)f(x)=2cos(x/2)(√3cos(x/2) - sin(x/2)) (1)設(shè)θ∈[ - π/2,π/2],且f(θ)=根號3 +1,求θ; -
秀英區(qū)棘輪: ______[答案] 解; f(x)=2cos(x/2)(√3cos(x/2)-sin(x/2)) =2√3cos2(x/2)-2sin(x/2)cos(x/2) =√3[2cos2(x/2)-1]-2sin(x/2)cos(x/2)+√3 =√3cosx-sinx+√3 =2cos(x+π/6)+√3 f(θ)=根號3 +1 所以f(θ)=2cos(θ+π/6)+√3=√3+1 所以cos(θ+π/6)=1/2 θ∈[-π/2,π/2] 所以θ+π/6∈[-π/...
.y=f(x)的圖像與直線y=2的兩個相鄰交點的距離等于派
你畫個圖就知道,T=派
這個距離就是告訴你周期呢,兩個挨著的最大值之間不就是一個周期么
相關(guān)評說:
秀英區(qū)棘輪: ______[答案] f(x)=根3sinwx+coswx=2sin(wx+π/6),所以最大值是2 .y=f(x)的圖像與直線y=2的兩個相鄰交點的距離等于派 你畫個圖就知道,T=派 這個距離就是告訴你周期呢,兩個挨著的最大值之間不就是一個周期么
秀英區(qū)棘輪: ______ 值域-2到2,遞減區(qū)間為π/24到7π/24的閉區(qū)間 f(x)=根號3sinwx+cos(wx+π/3)+cos(wx-π/3)=根號3sinwx+coswx=2sin(wx+π/3),所以值域為-2到2,2π/w=π/2,w=4,f(x)=2sin(4x+π/3),當X屬于(0,π/2)時,4x+π/3在π/3到7π/3之間,f(x)的單調(diào)遞減區(qū)間為4x+π/3大于π/2小于3π/2,固遞減區(qū)間為π/24到7π/24的閉區(qū)間
秀英區(qū)棘輪: ______[答案] f(x)=(√3sinwx+coswx)coswx-1/2=√3sinwxcoswx+cos2wx-1/2=√3/2(2sinwxcoswx)+1/2(2cos2wx-1)=√3/2sin(2wx)+1/2cos(2wx0=sin(2wx+π/6)∴2π/(2w)=4π ∴w=1/2∴f(x)=sin(x+π/6)∴當...
秀英區(qū)棘輪: ______ 1)∵cos(wx+π/3)+cos(wx-π/3)=coswxcosπ/3-sinwxsinπ/3+coswxcosπ/3+sinwxsinπ/3=coswx f(x)=根號3 sinwx+cos(wx+π/3)+cos(wx-π/3)=√3sinwx+coswx=2sin(wx+π/6) 函數(shù)f(x)的值域y∈[-2,2]2)若函數(shù)f(x)的最小正周期為π/2,則2π/w=π/2,∴w=4 f(x)=2sin(4x+π/6)0x+π/6=t, f(t)=2sint單調(diào)遞減區(qū)間 π/2π/2f(x)的單調(diào)遞減區(qū)間是[π/12 , π/3]
秀英區(qū)棘輪: ______[答案] f(x)=√3sinx/2cosx/2-cos2x/2+1/2 =√3/2sinx-1/2(1+cosx)+1/2 =√3/2sinx-1/2cosx =sin(x- π/6) f(x)=sin(x- π/6) x屬于[0,π/2] x- π/6屬于[- π/6,π/3] sin(x- π/6)=√3/3 cos(x- π/6)=2√2/3 cosx=cos[(x- π/6)+π/6]=cos(x- π/6)cosπ/6+sin(x- π/6)sinπ/6 =2√2/3*√3/2-√...
秀英區(qū)棘輪: ______ f(x)=(√3sinwx+coswx)coswx-1/2 =√3sinwxcoswx+cos2wx-1/2 =√3/2(2sinwxcoswx)+1/2(2cos2wx-1) =√3/2sin(2wx)+1/2cos(2wx0 =sin(2wx+π/6) ∴2π/(2w)=4π ∴w=1/2 ∴f(x)=sin(x+π/6) ∴當x+π/6∈[2kπ-π/2,2kπ+π/2]即x∈[2kπ-2π/3,2kπ+π/3]時,f(x)單調(diào)遞增 當x+π/6∈[2kπ+π/2,2kπ+3π/2]即x∈[2kπ+π/3,2kπ+4π/3]時,f(x)單調(diào)遞減
秀英區(qū)棘輪: ______ 若f(x)=根號3 2x+Ф=π/2+2kπ f(x+5π/6)=根號3sin(2x+5π/3+Ф)=根號3sin(π/2+2kπ+5π/3)=根號3(π/2+5π/3)=根號3sin(2π+π/6)=根號3sin(π/6)=根號3/2 f(x+π/12)=根號3sin(2x+π/6+Ф)=根號3sin(π/2+2kπ+π/6)=根號3sin(π/2+π/6)=根號3cos(π/6)=3/2 f(x+5π/6)
秀英區(qū)棘輪: ______[答案] f(x)=√3sin(ωx+φ)- cos(ωx+φ) =2(√3/2sin(ωx+φ)-1/2 cos(ωx+φ) )=2(cosπ/6sin(ωx+φ)-sinπ/6cos(ωx+φ) ) =2sin(ωx+φ-π/6) 這個函數(shù)是偶函數(shù),則φ-π/6=π/2的奇數(shù)倍,又因為0
秀英區(qū)棘輪: ______[答案] f(x)=2√3*sin(x+π/4)·cos(x+π/4)-sin(2x+3π) =√3sin(2x+π/2)+sin2x =√3cos2x+sin2x =2(cosπ/6·cos2x+sinπ/6·sin2x) =2cos(2x-π/6) ∴T=2π/2=π
秀英區(qū)棘輪: ______[答案] 解; f(x)=2cos(x/2)(√3cos(x/2)-sin(x/2)) =2√3cos2(x/2)-2sin(x/2)cos(x/2) =√3[2cos2(x/2)-1]-2sin(x/2)cos(x/2)+√3 =√3cosx-sinx+√3 =2cos(x+π/6)+√3 f(θ)=根號3 +1 所以f(θ)=2cos(θ+π/6)+√3=√3+1 所以cos(θ+π/6)=1/2 θ∈[-π/2,π/2] 所以θ+π/6∈[-π/...