等比數(shù)列【an】的前n項和為sn 若s3+3s2=0 則公比q= 等比數(shù)列{An}的前n項和為Sn,若S3+3S2=0,則公比...
Sn=[a1*(1-q^n)/(1-q)]
S3=a1*(1-q^3)/(1-q)
S2=a1*(1-q^2)/(1-q)
S3+3S2=0
a1*(1-q^3)/(1-q)+3*a1*(1-q^2)/(1-q)=0
因為是等比數(shù)列,所以a1不為0 q不為1 即1-q不為0
所以1-q^3+3(1-q^2)=0
(q+2)^2*(q-1)=0
q不為1
所以q只能等于-2
q=1時(an≠0)
S3=3a1
S2=2a1
S3+3S2=0
a1=0(舍)
q=-1時
S3=a1
S2=0
S3+2S2=0
a1=0(舍)
|q|≠1時且q≠0
S3=a1(1-q^3)/(1-q)=a1(1+q+q²)
S2=a1(1-q²)/(1-q)=a1(1+q)
S3+3S2=0
a1(4+4q+q²)=0
4+4q+q²=0
q=-2
束純15168413886: 設(shè)數(shù)列{an}的前n項和為Sn,且Sn=(1+λ) - λan.(1)求Sn.(2)若數(shù)列{an}為等比 -
邕寧縣剛輪: ______ 1. n=1時,a1=S1=(1+λ)-λa1 (1+λ)a1-(1+λ)=0 (1+λ)(a1-1)=0 1+λ=0或a1=1或兩等式同時成立. 1+λ=0時,Sn=an n≥2時,Sn=an S(n-1)=a(n-1) an=Sn-S(n-1)=an-a(n-1) a(n-1)=0,即數(shù)列為各項均為0的常數(shù)數(shù)列,同時可得1+λ=0與a1=1不同時成...
束純15168413886: 已知各項均為正數(shù)的等比數(shù)列{An}的前n項和為Sn,A1=3,S3=39,求數(shù)列{An}的通項公式? -
邕寧縣剛輪: ______[答案] A1=3, S3=39 s3=a1+a2+a3=3(1+q+q^2)=39 q^2+q-12=0 q=3 ,q=-4(舍去) an=3^n
束純15168413886: 簡單數(shù)學(xué)題【急】設(shè)等比數(shù)列an的前n項和為sn,若S4/S2=4,則S8/S4=設(shè)等比數(shù)列an的前n項和為sn,若=4,則S8/S4=?正確答案是10.一直算不對, -
邕寧縣剛輪: ______[答案] S[4]=a[1]+a[2]+a[3]+a[4]=S[2] + a[1]*q2 + a[2]*q2=(1+q2)S[2] 根據(jù)題意,S[4]/S[2]=1+q2=4,那么q2=3 同上述推理過程,S[8]=(1+q^4)S[4]=(1+32)S[4]=10S[4] 所以S[8]/S[4]=10
束純15168413886: 等比數(shù)列{an}的前n項和為Sn,已知S4=1,S8=17,求{an}通項公式設(shè){an}的公比為q,由S4=1,S8=17知q≠1,所以得a1(q^4 - 1)/(q - 1)=1,①a1(q^8 - 1)/(q - 1)=17.②... -
邕寧縣剛輪: ______[答案] 拜托,前后兩項是一個意思好不好.后面那項分子分母都提公因子-1,不久變成第一項了么,不要死扣概念,孩子.
束純15168413886: 已知數(shù)列{an}的前n項和為Sn,且2Sn=3an - 2n,n屬于N*,求證(1+an)是等比數(shù)列 -
邕寧縣剛輪: ______ 2sn=3an-2n2s(n-1)=3a(n-1)-2(n-1)2(sn-s(n-1))=3an-2n-3a(n-1)+2n-42an=3an-3a(n-1)-43a(n-1)+3=an+1(an+1)/(a(n-1)+1)=32s1=3a1-2 a1=2 a1+1=3 所以數(shù)列{1+an}為以3為首項,3為等比的等比數(shù)列.an+1=3*3(n-1)=3^n an=3^n-1
束純15168413886: 記等比數(shù)列{an}的前n項和為Sn,設(shè)S2=3,且a2,a3,a4 - 2成等差數(shù)列,求an及Sn 謝謝 -
邕寧縣剛輪: ______[答案] S2=a1+a2=a1+a1q=3 表達(dá)式1 2*a3=a2+a4-2等價于2a1q^2=a1q+a1q^3-2 表達(dá)式2 聯(lián)立上述方程得 3q^3-6q^2+q-2=0 即 (3q^2+1)*(q-2)=0 解得q=2 把q=2帶入表達(dá)式1得a1=1 所以an=2^(n-1) Sn=2^n-1
束純15168413886: 設(shè)等比數(shù)列(an)的前n項和為Sn,若a1=1,S6=4S3.求a2011 -
邕寧縣剛輪: ______[答案] a1=1, S6=4S3.即a1(1-q^6)/(1-q)=4a1(1-q^3)/(1-q) 所以,1-q^6=4(1-q^3),q^6 - 4q^3 +3=0 ,(q^3-1)(q^3-3)=0 q^3=3 a2011=a1* q^2010=1* (q^3)^670=3^670
束純15168413886: 設(shè)等比數(shù)列{an}的前n項和為Sn,前n項的各項的倒數(shù)之和為Tn,前n項之積為Pn,則Sn,Tn,Pn應(yīng)滿足的關(guān)系式為 -
邕寧縣剛輪: ______[答案] sn=a1(1-q^n)/(1-q)tn=1/a1(1-1/q^n)/(1-1/q)pn=a1^n*q^(n*(n-1)/2)n次根號下pn的平方乘以tn=snn次根號下pn的平方=a1^2*q^(n-1)a1^2*q^(n-1)*tn=a1(q^(n-1)*-1/q)/(1-1/q)=a1(1-q^n)/(1-q)=sn當(dāng)q=1時sn=na1tn=n/a1pn...
束純15168413886: 設(shè)等比數(shù)列{an}的前n項的和為Sn,前n項的倒數(shù)之和為Tn,則Sn/Tn= -
邕寧縣剛輪: ______[答案] 設(shè)等比數(shù)列{an}首項a1,公比q, Sn=[a1(1-q^n)]/(1-q); Tn=[1/a1*(1-(1/q)^n)/(1-1/q) =(q^n-1)/[q^(n-1)*a1*(q-1)] =(q^n-1)/[an*(q-1)];Sn/Tn =a1*an
束純15168413886: 已知首項為整數(shù)的等比數(shù)列{an}的前n項和為Sn, -
邕寧縣剛輪: ______ {an}為等比數(shù)列,q為公比所以:an=(a1)*q^(n-1)如果q不等于1Sn=(a1)*(1-q^n)/(1-q)記:數(shù)列{an^2/a(n+1)}為{bn}所以:bn=an^2/a(n+1)=((a1)^2*q^(2n-2))/...
S3=a1*(1-q^3)/(1-q)
S2=a1*(1-q^2)/(1-q)
S3+3S2=0
a1*(1-q^3)/(1-q)+3*a1*(1-q^2)/(1-q)=0
因為是等比數(shù)列,所以a1不為0 q不為1 即1-q不為0
所以1-q^3+3(1-q^2)=0
(q+2)^2*(q-1)=0
q不為1
所以q只能等于-2
q=1時(an≠0)
S3=3a1
S2=2a1
S3+3S2=0
a1=0(舍)
q=-1時
S3=a1
S2=0
S3+2S2=0
a1=0(舍)
|q|≠1時且q≠0
S3=a1(1-q^3)/(1-q)=a1(1+q+q²)
S2=a1(1-q²)/(1-q)=a1(1+q)
S3+3S2=0
a1(4+4q+q²)=0
4+4q+q²=0
q=-2
相關(guān)評說:
邕寧縣剛輪: ______ 1. n=1時,a1=S1=(1+λ)-λa1 (1+λ)a1-(1+λ)=0 (1+λ)(a1-1)=0 1+λ=0或a1=1或兩等式同時成立. 1+λ=0時,Sn=an n≥2時,Sn=an S(n-1)=a(n-1) an=Sn-S(n-1)=an-a(n-1) a(n-1)=0,即數(shù)列為各項均為0的常數(shù)數(shù)列,同時可得1+λ=0與a1=1不同時成...
邕寧縣剛輪: ______[答案] A1=3, S3=39 s3=a1+a2+a3=3(1+q+q^2)=39 q^2+q-12=0 q=3 ,q=-4(舍去) an=3^n
邕寧縣剛輪: ______[答案] S[4]=a[1]+a[2]+a[3]+a[4]=S[2] + a[1]*q2 + a[2]*q2=(1+q2)S[2] 根據(jù)題意,S[4]/S[2]=1+q2=4,那么q2=3 同上述推理過程,S[8]=(1+q^4)S[4]=(1+32)S[4]=10S[4] 所以S[8]/S[4]=10
邕寧縣剛輪: ______[答案] 拜托,前后兩項是一個意思好不好.后面那項分子分母都提公因子-1,不久變成第一項了么,不要死扣概念,孩子.
邕寧縣剛輪: ______ 2sn=3an-2n2s(n-1)=3a(n-1)-2(n-1)2(sn-s(n-1))=3an-2n-3a(n-1)+2n-42an=3an-3a(n-1)-43a(n-1)+3=an+1(an+1)/(a(n-1)+1)=32s1=3a1-2 a1=2 a1+1=3 所以數(shù)列{1+an}為以3為首項,3為等比的等比數(shù)列.an+1=3*3(n-1)=3^n an=3^n-1
邕寧縣剛輪: ______[答案] S2=a1+a2=a1+a1q=3 表達(dá)式1 2*a3=a2+a4-2等價于2a1q^2=a1q+a1q^3-2 表達(dá)式2 聯(lián)立上述方程得 3q^3-6q^2+q-2=0 即 (3q^2+1)*(q-2)=0 解得q=2 把q=2帶入表達(dá)式1得a1=1 所以an=2^(n-1) Sn=2^n-1
邕寧縣剛輪: ______[答案] a1=1, S6=4S3.即a1(1-q^6)/(1-q)=4a1(1-q^3)/(1-q) 所以,1-q^6=4(1-q^3),q^6 - 4q^3 +3=0 ,(q^3-1)(q^3-3)=0 q^3=3 a2011=a1* q^2010=1* (q^3)^670=3^670
邕寧縣剛輪: ______[答案] sn=a1(1-q^n)/(1-q)tn=1/a1(1-1/q^n)/(1-1/q)pn=a1^n*q^(n*(n-1)/2)n次根號下pn的平方乘以tn=snn次根號下pn的平方=a1^2*q^(n-1)a1^2*q^(n-1)*tn=a1(q^(n-1)*-1/q)/(1-1/q)=a1(1-q^n)/(1-q)=sn當(dāng)q=1時sn=na1tn=n/a1pn...
邕寧縣剛輪: ______[答案] 設(shè)等比數(shù)列{an}首項a1,公比q, Sn=[a1(1-q^n)]/(1-q); Tn=[1/a1*(1-(1/q)^n)/(1-1/q) =(q^n-1)/[q^(n-1)*a1*(q-1)] =(q^n-1)/[an*(q-1)];Sn/Tn =a1*an
邕寧縣剛輪: ______ {an}為等比數(shù)列,q為公比所以:an=(a1)*q^(n-1)如果q不等于1Sn=(a1)*(1-q^n)/(1-q)記:數(shù)列{an^2/a(n+1)}為{bn}所以:bn=an^2/a(n+1)=((a1)^2*q^(2n-2))/...