limx→0 (cosx+xsinx) limx→0 (cosx+xsinx)^(1/x^2)
原式=limx→0(1+xtanx)^(1/x^2)(Cosx)^(1/x^2)=limx→0(1+x^2)^(1/x^2) (1+Cosx-1)^{[1/(Cosx-1)][(Cosx-1)/x^2]}=elimx→0e^[(Cosx-1)/x^2]limx→0e^[(Cosx-1)/x^2]=limx→0(-sinx)/2x=-1/2所以,原式=exe^(-1/2...
端木瞿18913696517: limx→0(cosx) 1ln(1+x2)= - ----- -
鹿泉市極限: ______ =e, 而 , 故 原式=e? 1 2 = 1 e . 故答案為:
端木瞿18913696517: 求limx→0(1x - cotx). -
鹿泉市極限: ______[答案] lim x→0( 1 x-cotx) = lim x→0( 1 x- cosx sinx) = lim x→0( sinx-xcosx xsinx) = lim x→0 cosx-cosx+xsinx sinx+xcosx = lim x→0 xsinx sinx+xcosx = lim x→0 sinx+xcosx cosx+cosx-xsinx=0.
端木瞿18913696517: limx→0(㏑cosx/tanx2) -
鹿泉市極限: ______ limx→0(㏑cosx/tanx2)=limx→0(㏑(1+cosx-1)/x2)=limx→0(cosx-1)/x2=limx→0(-x2/2)/x2=-1/2
端木瞿18913696517: limx趨近于0(x - sinx)/x十sinx -
鹿泉市極限: ______ lim(x->0) (x-sinx)/(x+sinx)=lim(x->0) (1-cosx)/(1+cosx)=(1-1)/(1+1)=0
端木瞿18913696517: limx→0∫(x,0)sintdt/5x^2怎么做 -
鹿泉市極限: ______ limx→0∫(x,0)sintdt/5x^2=limx→0【-cosx-1】/5x^2=imx→0-【cosx+1】/5x^2=imx→0-【2sin^(x/2)】/5x^2=-1/10
端木瞿18913696517: limx→0 (cosx)^((cosx)^2) -
鹿泉市極限: ______[答案] 當x趨于0時; lim(cosx)^((cosx)^2) =lim e^ln[(cosx)^((cosx)^2)] =lim e^[(cosx)^2*ln cosx] =e^lim[(cosx)^2*ln cosx] =e^0 =1
端木瞿18913696517: 求limx→0(1/x^2 - cot^2x)的詳細步驟 -
鹿泉市極限: ______ limx→0(1/x^2-cot^2x) 這題是無窮-無窮型 一般用羅比達法則或者泰勒公式 limx→0[((sinx)^2-x^2(cosx)^2)/x^2(sinx)^2] =limx→0[(2cosxsinx-2x(cosx)^2-x^2*2cosxsinx)]/(x^2*2cosxsinx)+2x(cosx)^2) =limx→0(sinx-x-sinx*x^2)/(x^2sinx*+x) =limx→0(cosx-1-x^2-2xsinx)/(2xsinx+x^2+1) =0
端木瞿18913696517: 求極限limx→0 (tanx - sinx)/x - sinx -
鹿泉市極限: ______[答案] limx→0 (tanx-sinx)/(x-sinx) =limx→0 sinx(1-cosx)/(x-sinx)cosx =limx→0 x(x^2/2)/(x-sinx) =limx→0 (3/2)x^2/(1-cosx) =limx→0 (3/2)x^2/(x^2/2)=3
端木瞿18913696517: limx→01x(1x - cotx). -
鹿泉市極限: ______[答案] lim x→0 1 x( 1 x-cotx)= lim x→0 1 x( 1 x- cosx sinx)= lim x→0 1 x? sinx-xcosx xsinx= lim x→0 sinx-xcosx x2sinx = lim x→0 sinx-xcosx x3= lim x→0 cosx-cosx+xsinx 3x2= lim x→0 xsinx 3x2= lim x→0 sinx 3x= 1 3.
端木瞿18913696517: limx→0+[∫(0→x^2)t^(3/2)dt]/[∫(0→x)t(t - sint)dt] -
鹿泉市極限: ______ 答: lim ( x→0+) [ ∫(0→x^2) t^(3/2)dt] / [ ∫(0→x)t(t-sint)dt ] (0---0型可導用洛必達法則) =lim (x→0+) [ (x^2)^(3/2)*(x^2)' ] / [ x(x-sinx) ] =lim(x→0+) (2x^4) / [x(x-sinx)] =lim(x→0+) 2(x^3) /(x-sinx) 再次應用洛必達法則 =lim(x→0+) 6(x^2) /(1-cosx) 再次應用 =lim(x→0+) 12x/(sinx) =12
相關評說:
鹿泉市極限: ______ =e, 而 , 故 原式=e? 1 2 = 1 e . 故答案為:
鹿泉市極限: ______[答案] lim x→0( 1 x-cotx) = lim x→0( 1 x- cosx sinx) = lim x→0( sinx-xcosx xsinx) = lim x→0 cosx-cosx+xsinx sinx+xcosx = lim x→0 xsinx sinx+xcosx = lim x→0 sinx+xcosx cosx+cosx-xsinx=0.
鹿泉市極限: ______ limx→0(㏑cosx/tanx2)=limx→0(㏑(1+cosx-1)/x2)=limx→0(cosx-1)/x2=limx→0(-x2/2)/x2=-1/2
鹿泉市極限: ______ lim(x->0) (x-sinx)/(x+sinx)=lim(x->0) (1-cosx)/(1+cosx)=(1-1)/(1+1)=0
鹿泉市極限: ______ limx→0∫(x,0)sintdt/5x^2=limx→0【-cosx-1】/5x^2=imx→0-【cosx+1】/5x^2=imx→0-【2sin^(x/2)】/5x^2=-1/10
鹿泉市極限: ______[答案] 當x趨于0時; lim(cosx)^((cosx)^2) =lim e^ln[(cosx)^((cosx)^2)] =lim e^[(cosx)^2*ln cosx] =e^lim[(cosx)^2*ln cosx] =e^0 =1
鹿泉市極限: ______ limx→0(1/x^2-cot^2x) 這題是無窮-無窮型 一般用羅比達法則或者泰勒公式 limx→0[((sinx)^2-x^2(cosx)^2)/x^2(sinx)^2] =limx→0[(2cosxsinx-2x(cosx)^2-x^2*2cosxsinx)]/(x^2*2cosxsinx)+2x(cosx)^2) =limx→0(sinx-x-sinx*x^2)/(x^2sinx*+x) =limx→0(cosx-1-x^2-2xsinx)/(2xsinx+x^2+1) =0
鹿泉市極限: ______[答案] limx→0 (tanx-sinx)/(x-sinx) =limx→0 sinx(1-cosx)/(x-sinx)cosx =limx→0 x(x^2/2)/(x-sinx) =limx→0 (3/2)x^2/(1-cosx) =limx→0 (3/2)x^2/(x^2/2)=3
鹿泉市極限: ______[答案] lim x→0 1 x( 1 x-cotx)= lim x→0 1 x( 1 x- cosx sinx)= lim x→0 1 x? sinx-xcosx xsinx= lim x→0 sinx-xcosx x2sinx = lim x→0 sinx-xcosx x3= lim x→0 cosx-cosx+xsinx 3x2= lim x→0 xsinx 3x2= lim x→0 sinx 3x= 1 3.
鹿泉市極限: ______ 答: lim ( x→0+) [ ∫(0→x^2) t^(3/2)dt] / [ ∫(0→x)t(t-sint)dt ] (0---0型可導用洛必達法則) =lim (x→0+) [ (x^2)^(3/2)*(x^2)' ] / [ x(x-sinx) ] =lim(x→0+) (2x^4) / [x(x-sinx)] =lim(x→0+) 2(x^3) /(x-sinx) 再次應用洛必達法則 =lim(x→0+) 6(x^2) /(1-cosx) 再次應用 =lim(x→0+) 12x/(sinx) =12