什么是容斥原理,什么是抽屜原理? 大學(xué)理工類都有什么專業(yè)
容斥原理:先不考慮重疊的情況,把包含于某內(nèi)容中的所有對(duì)象的數(shù)目先計(jì)算出來(lái),然后再把計(jì)數(shù)時(shí)重復(fù)計(jì)算的數(shù)目排斥出去,使得計(jì)算的結(jié)果既無(wú)遺漏又無(wú)重復(fù),這種計(jì)數(shù)的方法稱為容斥原理。
抽屜原理:桌上有十個(gè)蘋果,要把這十個(gè)蘋果放到九個(gè)抽屜里,無(wú)論怎樣放,我們會(huì)發(fā)現(xiàn)至少會(huì)有一個(gè)抽屜里面至少放兩個(gè)蘋果。這一現(xiàn)象就是我們所說(shuō)的“抽屜原理”。 抽屜原理的一般含義為:“如果每個(gè)抽屜代表一個(gè)集合,每一個(gè)蘋果就可以代表一個(gè)元素,假如有n+1個(gè)元素放到n個(gè)集合中去,其中必定有一個(gè)集合里至少有兩個(gè)元素。” 抽屜原理有時(shí)也被稱為鴿巢原理。它是組合數(shù)學(xué)中一個(gè)重要的原理。
擴(kuò)展資料:
構(gòu)造抽屜的方法
運(yùn)用抽屜原理的核心是分析清楚問(wèn)題中,哪個(gè)是物件,哪個(gè)是抽屜。例如,屬相是有12個(gè),那么任意37個(gè)人中,至少有一個(gè)屬相是不少于4個(gè)人。這時(shí)將屬相看成12個(gè)抽屜,則一個(gè)抽屜中有 37/12,即3余1,余數(shù)不考慮,而向上考慮取整數(shù),所以這里是3+1=4個(gè)人,但這里需要注意的是,前面的余數(shù)1和這里加上的1是不一樣的 。
因此,在問(wèn)題中,較多的一方就是物件,較少的一方就是抽屜,比如上述問(wèn)題中的屬相12個(gè),就是對(duì)應(yīng)抽屜,37個(gè)人就是對(duì)應(yīng)物件,因?yàn)?7相對(duì)12多。
參考資料來(lái)源:百度百科-抽屜原理
參考資料來(lái)源:百度百科-容斥原理
容斥原理就是:在計(jì)數(shù)時(shí),為了使重疊部分不被重復(fù)計(jì)算,人們研究出一種新的計(jì)數(shù)方法,這種方法的基本思想是:先不考慮重疊的情況,把包含于某內(nèi)容中的所有對(duì)象的數(shù)目先計(jì)算出來(lái),然后再把計(jì)數(shù)時(shí)重復(fù)計(jì)算的數(shù)目排斥出去,使得計(jì)算的結(jié)果既無(wú)遺漏又無(wú)重復(fù),這種計(jì)數(shù)的方法稱為容斥原理。
抽屜原理是:桌上有十個(gè)蘋果,要把這十個(gè)蘋果放到九個(gè)抽屜里,無(wú)論怎樣放,有的抽屜可以放一個(gè),有的可以放兩個(gè),有的可以放五個(gè),但最終會(huì)發(fā)現(xiàn)至少可以找到一個(gè)抽屜里面至少放兩個(gè)蘋果。這一現(xiàn)象就是抽屜原理。
容斥原理
在計(jì)數(shù)時(shí),為了使重疊部分不被重復(fù)計(jì)算,人們研究出一種新的計(jì)數(shù)方法,這種方法的基本思想是:先不考慮重疊的情況,把包含于某內(nèi)容中的所有對(duì)象的數(shù)目先計(jì)算出來(lái),然后再把計(jì)數(shù)時(shí)重復(fù)計(jì)算的數(shù)目排斥出去,使得計(jì)算的結(jié)果既無(wú)遺漏又無(wú)重復(fù),這種計(jì)數(shù)的方法稱為容斥原理。
容斥原理(1)
如果被計(jì)數(shù)的事物有A、B兩類,那么,A類或B類元素個(gè)數(shù)= A類元素個(gè)數(shù)+
B類元素個(gè)數(shù)—既是A類又是B類的元素個(gè)數(shù)。
例1
一次期末考試,某班有15人數(shù)學(xué)得滿分,有12人語(yǔ)文得滿分,并且有4人語(yǔ)、數(shù)都是滿分,那么這個(gè)班至少有一門得滿分的同學(xué)有多少人?
分析:依題意,被計(jì)數(shù)的事物有語(yǔ)、數(shù)得滿分兩類,“數(shù)學(xué)得滿分”稱為“A類元素”,“語(yǔ)文得滿分”稱為“B類元素”,“語(yǔ)、數(shù)都是滿分”稱為“既是A類又是B類的元素”,“至少有一門得滿分的同學(xué)”稱為“A類或B類元素個(gè)數(shù)”的總和。
試一試:某班學(xué)生每人家里至少有空調(diào)和電腦兩種電器中的一種,已知家中有空調(diào)的有41人,有電容斥原理(2)
如果被計(jì)數(shù)的事物有A、B、C三類,那么,A類或B類或C類元素個(gè)數(shù)= A類元素個(gè)數(shù)+
B類元素個(gè)數(shù)+C類元素個(gè)數(shù)—既是A類又是B類的元素個(gè)數(shù)—既是A類又是C類的元素個(gè)數(shù)—既是B類又是C類的元素個(gè)數(shù)+既是A類又是B類而且是C類的元素個(gè)數(shù)。
例2某校六(1)班有學(xué)生54人,每人在暑假里都參加體育訓(xùn)練隊(duì),其中參加足球隊(duì)的有25人,參加排球隊(duì)的有22人,參加游泳隊(duì)的有34人,足球、排球都參加的有12人,足球、游泳都參加的有18人,排球、游泳都參加的有14人,問(wèn):三項(xiàng)都參加的有多少人?
分析:仿照例1的分析,你能先說(shuō)一說(shuō)嗎?
例3 在1到1000的自然數(shù)中,能被3或5整除的數(shù)共有多少個(gè)?不能被3或5整除的數(shù)共有多少個(gè)?
分析:顯然,這是一個(gè)重復(fù)計(jì)數(shù)問(wèn)題(當(dāng)然,如果不怕麻煩你可以分別去數(shù)3的倍數(shù),5的倍數(shù))。我們可以把“能被3或5整除的數(shù)”分別看成A類元素和B類元素,能“同時(shí)被3或5整除的數(shù)(15的倍數(shù))”就是被重復(fù)計(jì)算的數(shù),即“既是A類又是B類的元素”。求的是“A類或B類元素個(gè)數(shù)”。現(xiàn)在我們還不能直接計(jì)算,必須先求出所需條件。1000÷3=333……1,能被3整除的數(shù)有333個(gè)(想一想,這是為什么?)同理,可以求出其他的條件。
例4 分母是1001的最簡(jiǎn)分?jǐn)?shù)一共有多少個(gè)?
分析:這一題實(shí)際上就是找分子中不能整除1001的數(shù)。由于1001=7×11×13,所以就是找不能被7,11,13整除的數(shù)。
例5
某個(gè)班的全體學(xué)生在進(jìn)行了短跑、游泳、投擲三個(gè)項(xiàng)目的測(cè)試后,有4名學(xué)生在這三個(gè)項(xiàng)目上都沒(méi)有達(dá)到優(yōu)秀,其余每人至少有一項(xiàng)達(dá)到了優(yōu)秀,達(dá)到了優(yōu)秀的這部分學(xué)生情況如下表:
短跑 游泳 投擲 短跑、游泳 短跑、投擲 游泳、投擲 短路、游泳、投擲
1 7 1 8 1 5 6 6 5 2
求這個(gè)班的學(xué)生共有多少人?
分析:這個(gè)班的學(xué)生數(shù),應(yīng)包括達(dá)到優(yōu)秀和沒(méi)有達(dá)到優(yōu)秀的。
試一試:一個(gè)班有42人,參加合唱隊(duì)的有30人,參加美術(shù)組的有25人,有5人什么都沒(méi)有參加,求兩種都參加的有多少人?
例6
在一根長(zhǎng)的木棍上有三種刻度線,第一種刻度線將木棍分成10等份,第二種將木棍分成12等份,第三種將木棍分成15等份。如果沿每條刻度線將木棍鋸斷,木棍總共被鋸成多少段?
分析:很顯然,要計(jì)算木棍被鋸成多少段,只需要計(jì)算出木棍上共有多少條不同的刻度線,在此基礎(chǔ)上加1就是段數(shù)了。
若按將木棍分成10等份的刻度線鋸開(kāi),木棍有9條刻度線。在此木棍上加上將木棍分成12等份的11條刻度線,顯然刻度線有重復(fù)的,如5/10和6/12都是1/2。同樣再加上將木棍分成15等份的刻度線,也是如此。所以,我們應(yīng)該按容斥原理的方法來(lái)解決此問(wèn)題。用容斥原理的那一個(gè)呢?想一想,被計(jì)數(shù)的事物有那幾類?每一類的元素個(gè)數(shù)是多少?
桌上有十個(gè)蘋果,要把這十個(gè)蘋果放到九個(gè)抽屜里,無(wú)論怎樣放,有的抽屜可以放一個(gè),有的可以放兩個(gè),有的可以放五個(gè),但最終我們會(huì)發(fā)現(xiàn)至少我們可以找到一個(gè)抽屜里面至少放兩個(gè)蘋果。這一現(xiàn)象就是我們所說(shuō)的抽屜原理。
抽屜原理的一般含義為:“如果每個(gè)抽屜代表一個(gè)集合,每一個(gè)蘋果就可以代表一個(gè)元素,假如有n+1或多于n+1個(gè)元素放到n個(gè)集合中去,其中必定至少有一個(gè)集合里至少有兩個(gè)元素。”
抽屜原理有時(shí)也被稱為鴿巢原理(“如果有五個(gè)鴿子籠,養(yǎng)鴿人養(yǎng)了6只鴿子,那么當(dāng)鴿子飛回籠中后,至少有一個(gè)籠子中裝有2只鴿子”)。它是德國(guó)數(shù)學(xué)家狄利克雷首先明確的提出來(lái)并用以證明一些數(shù)論中的問(wèn)題,因此,也稱為狄利克雷原理。它是組合數(shù)學(xué)中一個(gè)重要的原理。
一. 抽屜原理最常見(jiàn)的形式
原理1 把多于n個(gè)的物體放到n個(gè)抽屜里,則至少有一個(gè)抽屜里有2個(gè)或2個(gè)以上的物體。
[證明](反證法):如果每個(gè)抽屜至多只能放進(jìn)一個(gè)物體,那么物體的總數(shù)至多是n,而不是題設(shè)的n+k(k≥1),這不可能.
原理2 把多于mn個(gè)的物體放到n個(gè)抽屜里,則至少有一個(gè)抽屜里有m+1個(gè)或多于m+1個(gè)的物體。
[證明](反證法):若每個(gè)抽屜至多放進(jìn)m個(gè)物體,那么n個(gè)抽屜至多放進(jìn)mn個(gè)物體,與題設(shè)不符,故不可能.
原理1 2都是第一抽屜原理的表述
第二抽屜原理:
把(mn-1)個(gè)物體放入n個(gè)抽屜中,其中必有一個(gè)抽屜中至多有(m—1)個(gè)物體。
[證明](反證法):若每個(gè)抽屜都有不少于m個(gè)物體,則總共至少有mn個(gè)物體,與題設(shè)矛盾,故不可能
二.應(yīng)用抽屜原理解題
抽屜原理的內(nèi)容簡(jiǎn)明樸素,易于接受,它在數(shù)學(xué)問(wèn)題中有重要的作用。許多有關(guān)存在性的證明都可用它來(lái)解決。
例1:400人中至少有兩個(gè)人的生日相同.
解:將一年中的366天視為366個(gè)抽屜,400個(gè)人看作400個(gè)物體,由抽屜原理1可以得知:至少有兩人的生日相同.
又如:我們從街上隨便找來(lái)13人,就可斷定他們中至少有兩個(gè)人屬相相同.
“從任意5雙手套中任取6只,其中至少有2只恰為一雙手套。”
“從數(shù)1,2,...,10中任取6個(gè)數(shù),其中至少有2個(gè)數(shù)為奇偶性不同。”
例2: 幼兒園買來(lái)了不少白兔、熊貓、長(zhǎng)頸鹿塑料玩具,每個(gè)小朋友任意選擇兩件,那么不管怎樣挑選,在任意七個(gè)小朋友中總有兩個(gè)彼此選的玩具都相同,試說(shuō)明道理.
解 :從三種玩具中挑選兩件,搭配方式只能是下面六種:(兔、兔),(兔、熊貓),(兔、長(zhǎng)頸鹿),(熊貓、熊貓),(熊貓、長(zhǎng)頸鹿),(長(zhǎng)頸鹿、長(zhǎng)頸鹿)。把每種搭配方式看作一個(gè)抽屜,把7個(gè)小朋友看作物體,那么根據(jù)原理1,至少有兩個(gè)物體要放進(jìn)同一個(gè)抽屜里,也就是說(shuō),至少兩人挑選玩具采用同一搭配方式,選的玩具相同.
上面數(shù)例論證的似乎都是“存在”、“總有”、“至少有”的問(wèn)題,不錯(cuò),這正是抽屜原則的主要作用.(需要說(shuō)明的是,運(yùn)用抽屜原則只是肯定了“存在”、“總有”、“至少有”,卻不能確切地指出哪個(gè)抽屜里存在多少.)
抽屜原理雖然簡(jiǎn)單,但應(yīng)用卻很廣泛,它可以解答很多有趣的問(wèn)題,其中有些問(wèn)題還具有相當(dāng)?shù)碾y度。下面我們來(lái)研究有關(guān)的一些問(wèn)題。
(一) 整除問(wèn)題
把所有整數(shù)按照除以某個(gè)自然數(shù)m的余數(shù)分為m類,叫做m的剩余類或同余類,用[0],[1],[2],…,[m-1]表示.每一個(gè)類含有無(wú)窮多個(gè)數(shù),例如[1]中含有1,m+1,2m+1,3m+1,….在研究與整除有關(guān)的問(wèn)題時(shí),常用剩余類作為抽屜.根據(jù)抽屜原理,可以證明:任意n+1個(gè)自然數(shù)中,總有兩個(gè)自然數(shù)的差是n的倍數(shù)。
例1 證明:任取8個(gè)自然數(shù),必有兩個(gè)數(shù)的差是7的倍數(shù)。
分析與解答 在與整除有關(guān)的問(wèn)題中有這樣的性質(zhì),如果兩個(gè)整數(shù)a、b,它們除以自然數(shù)m的余數(shù)相同,那么它們的差a-b是m的倍數(shù).根據(jù)這個(gè)性質(zhì),本題只需證明這8個(gè)自然數(shù)中有2個(gè)自然數(shù),它們除以7的余數(shù)相同.我們可以把所有自然數(shù)按被7除所得的7種不同的余數(shù)0、1、2、3、4、5、6分成七類.也就是7個(gè)抽屜.任取8個(gè)自然數(shù),根據(jù)抽屜原理,必有兩個(gè)數(shù)在同一個(gè)抽屜中,也就是它們除以7的余數(shù)相同,因此這兩個(gè)數(shù)的差一定是7的倍數(shù)。
例2:對(duì)于任意的五個(gè)自然數(shù),證明其中必有3個(gè)數(shù)的和能被3整除.
證明∵任何數(shù)除以3所得余數(shù)只能是0,1,2,不妨分別構(gòu)造為3個(gè)抽屜:
[0],[1],[2]
①若這五個(gè)自然數(shù)除以3后所得余數(shù)分別分布在這3個(gè)抽屜中,我們從這三個(gè)抽屜中各取1個(gè),其和必能被3整除.
②若這5個(gè)余數(shù)分布在其中的兩個(gè)抽屜中,則其中必有一個(gè)抽屜,包含有3個(gè)余數(shù)(抽屜原理),而這三個(gè)余數(shù)之和或?yàn)?,或?yàn)?,或?yàn)?,故所對(duì)應(yīng)的3個(gè)自然數(shù)之和是3的倍數(shù).
③若這5個(gè)余數(shù)分布在其中的一個(gè)抽屜中,很顯然,必有3個(gè)自然數(shù)之和能被3整除.
例2′:對(duì)于任意的11個(gè)整數(shù),證明其中一定有6個(gè)數(shù),它們的和能被6整除.
證明:設(shè)這11個(gè)整數(shù)為:a1,a2,a3……a11 又6=2×3
①先考慮被3整除的情形
由例2知,在11個(gè)任意整數(shù)中,必存在:
3|a1+a2+a3,不妨設(shè)a1+a2+a3=b1;
同理,剩下的8個(gè)任意整數(shù)中,由例2,必存在:3 | a4+a5+a6.設(shè)a4+a5+a6=b2;
同理,其余的5個(gè)任意整數(shù)中,有:3|a7+a8+a9,設(shè):a7+a8+a9=b3
②再考慮b1、b2、b3被2整除.
依據(jù)抽屜原理,b1、b2、b3這三個(gè)整數(shù)中,至少有兩個(gè)是同奇或同偶,這兩個(gè)同奇(或同偶)的整數(shù)之和必為偶數(shù).不妨設(shè)2|b1+b2
則:6|b1+b2,即:6|a1+a2+a3+a4+a5+a6
∴任意11個(gè)整數(shù),其中必有6個(gè)數(shù)的和是6的倍數(shù).
例3: 任意給定7個(gè)不同的自然數(shù),求證其中必有兩個(gè)整數(shù),其和或差是10的倍數(shù).
分析:注意到這些數(shù)隊(duì)以10的余數(shù)即個(gè)位數(shù)字,以0,1,…,9為標(biāo)準(zhǔn)制造10個(gè)抽屜,標(biāo)以[0],[1],…,[9].若有兩數(shù)落入同一抽屜,其差是10的倍數(shù),只是僅有7個(gè)自然數(shù),似不便運(yùn)用抽屜原則,再作調(diào)整:[6],[7],[8],[9]四個(gè)抽屜分別與[4],[3],[2],[1]合并,則可保證至少有一個(gè)抽屜里有兩個(gè)數(shù),它們的和或差是10的倍數(shù).
(二)面積問(wèn)題
例:九條直線中的每一條直線都將正方形分成面積比為2:3的梯形,證明:這九條直線中至少有三條經(jīng)過(guò)同一點(diǎn).
證明:如圖,設(shè)直線EF將正方形分成兩個(gè)梯形,作中位線MN。由于這兩個(gè)梯形的高相等, 故它們的面積之比等于中位線長(zhǎng)的比,即|MH|:|NH| 。于是點(diǎn)H有確定的位置(它在正方形一對(duì)對(duì)邊中點(diǎn)的連線上,且|MH|:|NH|=2:3). 由幾何上的對(duì)稱性,這種點(diǎn)共有四個(gè)(即圖中的H、J、I、K).已知的九條適合條件的分割直線中的每一條必須經(jīng)過(guò)H、J、I、K這四點(diǎn)中的一點(diǎn).把H、J、I、K看成四個(gè)抽屜,九條直線當(dāng)成9個(gè)物體,即可得出必定有3條分割線經(jīng)過(guò)同一點(diǎn).
(三)染色問(wèn)題
例1正方體各面上涂上紅色或藍(lán)色的油漆(每面只涂一種色),證明正方體一定有三個(gè)面顏色相同.
證明:把兩種顏色當(dāng)作兩個(gè)抽屜,把正方體六個(gè)面當(dāng)作物體,那么6=2×2+2,根據(jù)原理二,至少有三個(gè)面涂上相同的顏色.
例2 有5個(gè)小朋友,每人都從裝有許多黑白圍棋子的布袋中任意摸出3枚棋子.請(qǐng)你證明,這5個(gè)人中至少有兩個(gè)小朋友摸出的棋子的顏色的配組是一樣的。
分析與解答 首先要確定3枚棋子的顏色可以有多少種不同的情況,可以有:3黑,2黑1白,1黑2白,3白共4種配組情況,看作4個(gè)抽屜.根據(jù)抽屜原理,至少有兩個(gè)小朋友摸出的棋子的顏色在同一個(gè)抽屜里,也就是他們所拿棋子的顏色配組是一樣的。
例3:假設(shè)在一個(gè)平面上有任意六個(gè)點(diǎn),無(wú)三點(diǎn)共線,每?jī)牲c(diǎn)用紅色或藍(lán)色的線段連起來(lái),都連好后,問(wèn)你能不能找到一個(gè)由這些線構(gòu)成的三角形,使三角形的三邊同色?
解:首先可以從這六個(gè)點(diǎn)中任意選擇一點(diǎn),然后把這一點(diǎn)到其他五點(diǎn)間連五條線段,如圖,在這五條線段中,至少有三條線段是同一種顏色,假定是紅色,現(xiàn)在我們?cè)賳为?dú)來(lái)研究這三條紅色的線。這三條線段的另一端或許是不同顏色,假設(shè)這三條線段(虛線)中其中一條是紅色的,那么這條紅色的線段和其他兩條紅色的線段便組成了我們所需要的同色三角形,如果這三條線段都是藍(lán)色的,那么這三條線段也組成我們所需要的同色三角形。因而無(wú)論怎樣著色,在這六點(diǎn)之間的所有線段中至少能找到一個(gè)同色三角形。
例3′(六人集會(huì)問(wèn)題)證明在任意6個(gè)人的集會(huì)上,或者有3個(gè)人以前彼此相識(shí),或者有三個(gè)人以前彼此不相識(shí)。”
例3”:17個(gè)科學(xué)家中每個(gè)人與其余16個(gè)人通信,他們通信所討論的僅有三個(gè)問(wèn)題,而任兩個(gè)科學(xué)家之間通信討論的是同一個(gè)問(wèn)題。證明:至少有三個(gè)科學(xué)家通信時(shí)討論的是同一個(gè)問(wèn)題。
解:不妨設(shè)A是某科學(xué)家,他與其余16位討論僅三個(gè)問(wèn)題,由鴿籠原理知,他至少與其中的6位討論同一問(wèn)題。設(shè)這6位科學(xué)家為B,C,D,E,F(xiàn),G,討論的是甲問(wèn)題。
若這6位中有兩位之間也討論甲問(wèn)題,則結(jié)論成立。否則他們6位只討論乙、丙兩問(wèn)題。這樣又由鴿籠原理知B至少與另三位討論同一問(wèn)題,不妨設(shè)這三位是C,D,E,且討論的是乙問(wèn)題。
若C,D,E中有兩人也討論乙問(wèn)題,則結(jié)論也就成立了。否則,他們間只討論丙問(wèn)題,這樣結(jié)論也成立。
三.制造抽屜是運(yùn)用原則的一大關(guān)鍵
例1 從2、4、6、…、30這15個(gè)偶數(shù)中,任取9個(gè)數(shù),證明其中一定有兩個(gè)數(shù)之和是34。
分析與解答 我們用題目中的15個(gè)偶數(shù)制造8個(gè)抽屜:
凡是抽屜中有兩個(gè)數(shù)的,都具有一個(gè)共同的特點(diǎn):這兩個(gè)數(shù)的和是34。現(xiàn)從題目中的15個(gè)偶數(shù)中任取9個(gè)數(shù),由抽屜原理(因?yàn)槌閷现挥?個(gè)),必有兩個(gè)數(shù)在同一個(gè)抽屜中.由制造的抽屜的特點(diǎn),這兩個(gè)數(shù)的和是34。
例2:從1、2、3、4、…、19、20這20個(gè)自然數(shù)中,至少任選幾個(gè)數(shù),就可以保證其中一定包括兩個(gè)數(shù),它們的差是12。
分析與解答在這20個(gè)自然數(shù)中,差是12的有以下8對(duì):{20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}。
另外還有4個(gè)不能配對(duì)的數(shù){9},{10},{11},{12},共制成12個(gè)抽屜(每個(gè)括號(hào)看成一個(gè)抽屜).只要有兩個(gè)數(shù)取自同一個(gè)抽屜,那么它們的差就等于12,根據(jù)抽屜原理至少任選13個(gè)數(shù),即可辦到(取12個(gè)數(shù):從12個(gè)抽屜中各取一個(gè)數(shù)(例如取1,2,3,…,12),那么這12個(gè)數(shù)中任意兩個(gè)數(shù)的差必不等于12)。
例3: 從1到20這20個(gè)數(shù)中,任取11個(gè)數(shù),必有兩個(gè)數(shù),其中一個(gè)數(shù)是另一個(gè)數(shù)的倍數(shù)。
分析與解答 根據(jù)題目所要求證的問(wèn)題,應(yīng)考慮按照同一抽屜中,任意兩數(shù)都具有倍數(shù)關(guān)系的原則制造抽屜.把這20個(gè)數(shù)按奇數(shù)及其倍數(shù)分成以下十組,看成10個(gè)抽屜(顯然,它們具有上述性質(zhì)):
{1,2,4,8,16},{3,6,12},{5,10,20},{7,14},{9,18},{11},{13},{15},{17},{19}。
從這10個(gè)數(shù)組的20個(gè)數(shù)中任取11個(gè)數(shù),根據(jù)抽屜原理,至少有兩個(gè)數(shù)取自同一個(gè)抽屜.由于凡在同一抽屜中的兩個(gè)數(shù)都具有倍數(shù)關(guān)系,所以這兩個(gè)數(shù)中,其中一個(gè)數(shù)一定是另一個(gè)數(shù)的倍數(shù)。
例4:某校校慶,來(lái)了n位校友,彼此認(rèn)識(shí)的握手問(wèn)候.請(qǐng)你證明無(wú)論什么情況,在這n個(gè)校友中至少有兩人握手的次數(shù)一樣多。
分析與解答 共有n位校友,每個(gè)人握手的次數(shù)最少是0次,即這個(gè)人與其他校友都沒(méi)有握過(guò)手;最多有n-1次,即這個(gè)人與每位到會(huì)校友都握了手.然而,如果有一個(gè)校友握手的次數(shù)是0次,那么握手次數(shù)最多的不能多于n-2次;如果有一個(gè)校友握手的次數(shù)是n-1次,那么握手次數(shù)最少的不能少于1次.不管是前一種狀態(tài)0、1、2、…、n-2,還是后一種狀態(tài)1、2、3、…、n-1,握手次數(shù)都只有n-1種情況.把這n-1種情況看成n-1個(gè)抽屜,到會(huì)的n個(gè)校友每人按照其握手的次數(shù)歸入相應(yīng)的“抽屜”,根據(jù)抽屜原理,至少有兩個(gè)人屬于同一抽屜,則這兩個(gè)人握手的次數(shù)一樣多。
在有些問(wèn)題中,“抽屜”和“物體”不是很明顯的,需要精心制造“抽屜”和“物體”.如何制造“抽屜”和“物體”可能是很困難的,一方面需要認(rèn)真地分析題目中的條件和問(wèn)題,另一方面需要多做一些題積累經(jīng)驗(yàn)。
抽屜原理
把八個(gè)蘋果任意地放進(jìn)七個(gè)抽屜里,不論怎樣放,至少有一個(gè)抽屜放有兩個(gè)或兩個(gè)以上的蘋果。抽屜原則有時(shí)也被稱為鴿巢原理,它是德國(guó)數(shù)學(xué)家狄利克雷首先明確的提出來(lái)并用以證明一些數(shù)論中的問(wèn)題,因此,也稱為狄利克雷原則。它是組合數(shù)學(xué)中一個(gè)重要的原理。把它推廣到一般情形有以下幾種表現(xiàn)形式。
形式一:證明:設(shè)把n+1個(gè)元素分為n個(gè)集合A1,A2,…,An,用a1,a2,…,an表示這n個(gè)集合里相應(yīng)的元素個(gè)數(shù),需要證明至少存在某個(gè)ai大于或等于2(用反證法)假設(shè)結(jié)論不成立,即對(duì)每一個(gè)ai都有ai<2,則因?yàn)閍i是整數(shù),應(yīng)有ai≤1,于是有:
a1+a2+…+an≤1+1+…+1=n<n+1這與題設(shè)矛盾。所以,至少有一個(gè)ai≥2,即必有一個(gè)集合中含有兩個(gè)或兩個(gè)以上的元素。
形式二:設(shè)把n•m+1個(gè)元素分為n個(gè)集合A1,A2,…,An,用a1,a2,…,an表示這n個(gè)集合里相應(yīng)的元素個(gè)數(shù),需要證明至少存在某個(gè)ai大于或等于m+1。用反證法)假設(shè)結(jié)論不成立,即對(duì)每一個(gè)ai都有ai<m+1,則因?yàn)閍i是整數(shù),應(yīng)有ai≤m,于是有:
a1+a2+…+an≤m+m+…+m=n•m<n•m+1
n個(gè)m 這與題設(shè)相矛盾。所以,至少有存在一個(gè)ai≥m+1
高斯函數(shù):對(duì)任意的實(shí)數(shù)x,[x]表示“不大于x的最大整數(shù)”.
例如:[3.5]=3,[2.9]=2,[-2.5]=-3,[7]=7,……一般地,我們有:[x]≤x<[x]+1
形式三:證明:設(shè)把n個(gè)元素分為k個(gè)集合A1,A2,…,Ak,用a1,a2,…,ak表示這k個(gè)集合里相應(yīng)的元素個(gè)數(shù),需要證明至少存在某個(gè)ai大于或等于[n/k]。(用反證法)假設(shè)結(jié)論不成立,即對(duì)每一個(gè)ai都有ai<[n/k],于是有:
a1+a2+…+ak<[n/k]+[n/k]+…+[n/k] =k•[n/k]≤k•(n/k)=n
k個(gè)[n/k] ∴ a1+a2+…+ak<n 這與題設(shè)相矛盾。所以,必有一個(gè)集合中元素個(gè)數(shù)大于或等于[n/k]
形式四:證明:設(shè)把q1+q2+…+qn-n+1個(gè)元素分為n個(gè)集合A1,A2,…,An,用a1,a2,…,an表示這n個(gè)集合里相應(yīng)的元素個(gè)數(shù),需要證明至少存在某個(gè)i,使得ai大于或等于qi。(用反證法)假設(shè)結(jié)論不成立,即對(duì)每一個(gè)ai都有ai<qi,因?yàn)閍i為整數(shù),應(yīng)有ai≤qi-1,于是有:a1+a2+…+an≤q1+q2+…+qn-n <q1+q2+…+qn-n+1這與題設(shè)矛盾。
所以,假設(shè)不成立,故必有一個(gè)i,在第i個(gè)集合中元素個(gè)數(shù)ai≥qi
形式五:證明:(用反證法)將無(wú)窮多個(gè)元素分為有限個(gè)集合,假設(shè)這有限個(gè)集合中的元素的個(gè)數(shù)都是有限個(gè),則有限個(gè)有限數(shù)相加,所得的數(shù)必是有限數(shù),這就與題設(shè)產(chǎn)生矛盾,所以,假設(shè)不成立,故必有一個(gè)集合含有無(wú)窮多個(gè)元素。
例題1:400人中至少有兩個(gè)人的生日相同.分析:生日從1月1日排到12月31日,共有366個(gè)不相同的生日,我們把366個(gè)不同的生日看作366個(gè)抽屜,400人視為400個(gè)蘋果,由表現(xiàn)形式1可知,至少有兩人在同一個(gè)抽屜里,所以這400人中有兩人的生日相同.
解:將一年中的366天視為366個(gè)抽屜,400個(gè)人看作400個(gè)蘋果,由抽屜原理的表現(xiàn)形式1可以得知:至少有兩人的生日相同.
例題2:任取5個(gè)整數(shù),必然能夠從中選出三個(gè),使它們的和能夠被3整除.
證明:任意給一個(gè)整數(shù),它被3除,余數(shù)可能為0,1,2,我們把被3除余數(shù)為0,1,2的整數(shù)各歸入類r0,r1,r2.至少有一類包含所給5個(gè)數(shù)中的至少兩個(gè).因此可能出現(xiàn)兩種情況:1°.某一類至少包含三個(gè)數(shù);2°.某兩類各含兩個(gè)數(shù),第三類包含一個(gè)數(shù).
若是第一種情況,就在至少包含三個(gè)數(shù)的那一類中任取三數(shù),其和一定能被3整除;若是第二種情況,在三類中各取一個(gè)數(shù),其和也能被3整除..綜上所述,原命題正確.
例題3:某校派出學(xué)生204人上山植樹(shù)15301株,其中最少一人植樹(shù)50株,最多一人植樹(shù)100株,則至少有5人植樹(shù)的株數(shù)相同.
證明:按植樹(shù)的多少,從50到100株可以構(gòu)造51個(gè)抽屜,則個(gè)問(wèn)題就轉(zhuǎn)化為至少有5人植樹(shù)的株數(shù)在同一個(gè)抽屜里.
(用反證法)假設(shè)無(wú)5人或5人以上植樹(shù)的株數(shù)在同一個(gè)抽屜里,那只有5人以下植樹(shù)的株數(shù)在同一個(gè)抽屜里,而參加植樹(shù)的人數(shù)為204人,所以,每個(gè)抽屜最多有4人,故植樹(shù)的總株數(shù)最多有:
4(50+51+…+100)=4× =15300<15301得出矛盾.因此,至少有5人植樹(shù)的株數(shù)相同.
練習(xí):1.邊長(zhǎng)為1的等邊三角形內(nèi)有5個(gè)點(diǎn),那么這5個(gè)點(diǎn)中一定有距離小于0.5的兩點(diǎn).
2.邊長(zhǎng)為1的等邊三角形內(nèi),若有n2+1個(gè)點(diǎn),則至少存在2點(diǎn)距離小于 .
3.求證:任意四個(gè)整數(shù)中,至少有兩個(gè)整數(shù)的差能夠被3整除.
4.某校高一某班有50名新生,試說(shuō)明其中一定有二人的熟人一樣多.
5.某個(gè)年級(jí)有202人參加考試,滿分為100分,且得分都為整數(shù),總得分為10101分,則至少有3人得分相同.
“任意367個(gè)人中,必有生日相同的人。”
“從任意5雙手套中任取6只,其中至少有2只恰為一雙手套。”
“從數(shù)1,2,...,10中任取6個(gè)數(shù),其中至少有2個(gè)數(shù)為奇偶性不同。”
... ...
大家都會(huì)認(rèn)為上面所述結(jié)論是正確的。這些結(jié)論是依據(jù)什么原理得出的呢?這個(gè)原理叫做抽屜原理。它的內(nèi)容可以用形象的語(yǔ)言表述為:
“把m個(gè)東西任意分放進(jìn)n個(gè)空抽屜里(m>n),那么一定有一個(gè)抽屜中放進(jìn)了至少2個(gè)東西。”
在上面的第一個(gè)結(jié)論中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。這相當(dāng)于把367個(gè)東西放入 366個(gè)抽屜,至少有2個(gè)東西在同一抽屜里。在第二個(gè)結(jié)論中,不妨想象將5雙手套分別編號(hào),即號(hào)碼為1,2,...,5的手套各有兩只,同號(hào)的兩只是一雙。任取6只手套,它們的編號(hào)至多有5種,因此其中至少有兩只的號(hào)碼相同。這相當(dāng)于把6個(gè)東西放入5個(gè)抽屜,至少有2個(gè)東西在同一抽屜里。
抽屜原理的一種更一般的表述為:
“把多于kn個(gè)東西任意分放進(jìn)n個(gè)空抽屜(k是正整數(shù)),那么一定有一個(gè)抽屜中放進(jìn)了至少k+1個(gè)東西。”
利用上述原理容易證明:“任意7個(gè)整數(shù)中,至少有3個(gè)數(shù)的兩兩之差是3的倍數(shù)。”因?yàn)槿我徽麛?shù)除以3時(shí)余數(shù)只有0、1、2三種可能,所以7個(gè)整數(shù)中至少有3個(gè)數(shù)除以3所得余數(shù)相同,即它們兩兩之差是3的倍數(shù)。
如果問(wèn)題所討論的對(duì)象有無(wú)限多個(gè),抽屜原理還有另一種表述:
“把無(wú)限多個(gè)東西任意分放進(jìn)n個(gè)空抽屜(n是自然數(shù)),那么一定有一個(gè)抽屜中放進(jìn)了無(wú)限多個(gè)東西。”
抽屜原理的內(nèi)容簡(jiǎn)明樸素,易于接受,它在數(shù)學(xué)問(wèn)題中有重要的作用。許多有關(guān)存在性的證明都可用它來(lái)解決。
1958年6/7月號(hào)的《美國(guó)數(shù)學(xué)月刊》上有這樣一道題目:
“證明在任意6個(gè)人的集會(huì)上,或者有3個(gè)人以前彼此相識(shí),或者有三個(gè)人以前彼此不相識(shí)。”
這個(gè)問(wèn)題可以用如下方法簡(jiǎn)單明了地證出:
在平面上用6個(gè)點(diǎn)A、B、C、D、E、F分別代表參加集會(huì)的任意6個(gè)人。如果兩人以前彼此認(rèn)識(shí),那么就在代表他們的兩點(diǎn)間連成一條紅線;否則連一條藍(lán)線。考慮A點(diǎn)與其余各點(diǎn)間的5條連線AB,AC,...,AF,它們的顏色不超過(guò)2種。根據(jù)抽屜原理可知其中至少有3條連線同色,不妨設(shè)AB,AC,AD同為紅色。如果BC,BD ,CD 3條連線中有一條(不妨設(shè)為BC)也為紅色,那么三角形ABC即一個(gè)紅色三角形,A、B、C代表的3個(gè)人以前彼此相識(shí):如果BC、BD、CD 3條連線全為藍(lán)色,那么三角形BCD即一個(gè)藍(lán)色三角形,B、C、D代表的3個(gè)人以前彼此不相識(shí)。不論哪種情形發(fā)生,都符合問(wèn)題的結(jié)論。
六人集會(huì)問(wèn)題是組合數(shù)學(xué)中著名的拉姆塞定理的一個(gè)最簡(jiǎn)單的特例,這個(gè)簡(jiǎn)單問(wèn)題的證明思想可用來(lái)得出另外一些深入的結(jié)論。這些結(jié)論構(gòu)成了組合數(shù)學(xué)中的重要內(nèi)容-----拉姆塞理論。從六人集會(huì)問(wèn)題的證明中,我們又一次看到了抽屜原理的應(yīng)用。
容斥原理:
先不考慮重疊的情況,把包含于某內(nèi)容中的所有對(duì)象的數(shù)目先計(jì)算出來(lái),然后再把計(jì)數(shù)時(shí)重復(fù)計(jì)算的數(shù)目排斥出去,使得計(jì)算的結(jié)果既無(wú)遺漏又無(wú)重復(fù),這種計(jì)數(shù)的方法稱為容斥原理。
抽屜原理:
如果每個(gè)抽屜代表一個(gè)集合,每一個(gè)蘋果就可以代表一個(gè)元素,假如有n+1或多于n+1個(gè)元素放到n個(gè)集合中去,其中必定至少有一個(gè)集合里至少有兩個(gè)元素。
原理1 把多于n個(gè)的物體放到n個(gè)抽屜里,則至少有一個(gè)抽屜里有2個(gè)或2個(gè)以上的物體。
原理2把(mn-1)個(gè)物體放入n個(gè)抽屜中,其中必有一個(gè)抽屜中至多有(m—1)個(gè)物體。
容斥原理和抽屜原理的區(qū)別
容斥原理和抽屜原理是組合數(shù)學(xué)中的兩個(gè)核心原理,它們?cè)诮鉀Q計(jì)數(shù)問(wèn)題中起到重要的作用。它們的區(qū)別如下:1. 容斥原理(Inclusion-Exclusion Principle): 容斥原理用于計(jì)算多個(gè)集合的交集和并集中元素的個(gè)數(shù)。簡(jiǎn)而言之,它是一種用于計(jì)數(shù)的技巧,可以用來(lái)求解某些含有重疊部分的情況。容斥原理的核心思想是...
什么是容斥原理,什么是抽屜原理?
容斥原理就是:在計(jì)數(shù)時(shí),為了使重疊部分不被重復(fù)計(jì)算,人們研究出一種新的計(jì)數(shù)方法,這種方法的基本思想是:先不考慮重疊的情況,把包含于某內(nèi)容中的所有對(duì)象的數(shù)目先計(jì)算出來(lái),然后再把計(jì)數(shù)時(shí)重復(fù)計(jì)算的數(shù)目排斥出去,使得計(jì)算的結(jié)果既無(wú)遺漏又無(wú)重復(fù),這種計(jì)數(shù)的方法稱為容斥原理。抽屜原理是:桌上有十...
什么是容斥原理,什么是抽屜原理?
容斥原理:先不考慮重疊的情況,把包含于某內(nèi)容中的所有對(duì)象的數(shù)目先計(jì)算出來(lái),然后再把計(jì)數(shù)時(shí)重復(fù)計(jì)算的數(shù)目排斥出去,使得計(jì)算的結(jié)果既無(wú)遺漏又無(wú)重復(fù),這種計(jì)數(shù)的方法稱為容斥原理。抽屜原理:桌上有十個(gè)蘋果,要把這十個(gè)蘋果放到九個(gè)抽屜里,無(wú)論怎樣放,我們會(huì)發(fā)現(xiàn)至少會(huì)有一個(gè)抽屜里面至少放兩個(gè)蘋...
小學(xué)奧數(shù)三大原理分別是那些
1、最不利原則:從最不利的狀況去考慮;2、抽屜原理:如果每個(gè)抽屜代表一個(gè)集合,每一個(gè)蘋果就可以代表一個(gè)元素,假如有n+1或多于n+1個(gè)元素放到n個(gè)集合中去,其中必定至少有一個(gè)集合里有兩個(gè)元素;3、容斥原理:把包含于某內(nèi)容中的所有對(duì)象的數(shù)目先計(jì)算出來(lái),然后再把計(jì)數(shù)時(shí)重復(fù)計(jì)算的數(shù)目排斥出去,...
組合數(shù)學(xué)初步目錄
第二章介紹了抽屜原理,其基本形式為:如果有更多的物品放入較少的抽屜中,則至少有一個(gè)抽屜中包含多于一個(gè)物品。加強(qiáng)形式和一般形式則提供了更深入的洞察。通過(guò)習(xí)題二,您可以學(xué)習(xí)如何應(yīng)用抽屜原理解決復(fù)雜問(wèn)題。在第三章,我們探索容斥原理,這是解決計(jì)數(shù)問(wèn)題的重要工具。通過(guò)數(shù)論中的應(yīng)用、錯(cuò)位問(wèn)題以及...
“數(shù)學(xué)廣角”有什么內(nèi)容?
抽屜原理的一般含義為:“如果每個(gè)抽屜代表一個(gè)集合,每一個(gè)蘋果就可以代表一個(gè)元素,假如有n+1個(gè)元素放到n個(gè)集合中去,其中必定有一個(gè)集合里至少有兩個(gè)元素。” 抽屜原理有時(shí)也被稱為鴿巢原理。它是組合數(shù)學(xué)中一個(gè)重要的原理。三、分類 分類,是指按照種類、等級(jí)或性質(zhì)分別歸類。四、找規(guī)律 找規(guī)律...
小學(xué)1~6年級(jí)奧數(shù)知識(shí)要點(diǎn)
3. 容斥原理:① 總數(shù)量=A+B+C-(AB+AC+BC)+ABC② 常用:總數(shù)量=A+B-AB4. 抽屜原理:至多至少問(wèn)題5. 握手問(wèn)題在圖形計(jì)數(shù)中應(yīng)用廣泛①角、線段、三角形,② 長(zhǎng)方形、梯形、平行四邊形③ 正方形七、 分?jǐn)?shù)問(wèn)題1. 量率對(duì)應(yīng)2. 以不變量為“1”3. 利潤(rùn)問(wèn)題4. 濃度問(wèn)題倒三角原理例: 5. 工程問(wèn)題① 合作...
高中數(shù)學(xué)計(jì)數(shù)原理技巧
1.抽屜原理:如果有n+1個(gè)物品放入n個(gè)盒子,則至少有一個(gè)盒子內(nèi)有兩個(gè)或更多的物品。2.鴿巢原理:如果將n個(gè)物體放入m個(gè)集合內(nèi),且n>m,則至少有一個(gè)集合內(nèi)有兩個(gè)或更多的物體。3.同余定理:如果兩個(gè)整數(shù)關(guān)于一個(gè)正整數(shù)m的余數(shù)相等,則這兩個(gè)整數(shù)在模m意義下同余。4.容斥原理:如果要計(jì)算多個(gè)集...
請(qǐng)教做ACM的常用算法..還是菜鳥
1.容斥原理. 2.抽屜原理. 3.置換群與Polya定理(poj1286,poj2409,poj3270,poj1026). 4.遞推關(guān)系和母函數(shù). (2)數(shù)學(xué). 1.高斯消元法(poj2947,poj1487, poj2065,poj1166,poj1222) 2.概率問(wèn)題. (poj3071,poj3440) 3.GCD、擴(kuò)展的歐幾里德(中國(guó)剩余定理) (poj3101) (3)計(jì)算方法. 1.0\/1分...
小學(xué)奧數(shù)包括哪些內(nèi)容
3. 容斥原理:① 總數(shù)量=A+B+C-(AB+AC+BC)+ABC② 常用:總數(shù)量=A+B-AB4. 抽屜原理:至多至少問(wèn)題5. 握手問(wèn)題在圖形計(jì)數(shù)中應(yīng)用廣泛①角、線段、三角形,② 長(zhǎng)方形、梯形、平行四邊形③ 正方形七、 分?jǐn)?shù)問(wèn)題1. 量率對(duì)應(yīng)2. 以不變量為“1”3. 利潤(rùn)問(wèn)題4. 濃度問(wèn)題倒三角原理例: 5. 工程問(wèn)題① 合作...
相關(guān)評(píng)說(shuō):
長(zhǎng)春市閉式: ______ 原理就是 現(xiàn)在有多個(gè)抽屜 有比抽屜個(gè)數(shù)多的物體往抽屜里面放 那首先要先保證每個(gè)抽屜里面都有物體,換句話說(shuō),先保證不讓空抽屜出現(xiàn) 等每個(gè)抽屜都有1個(gè)物體了,再往隨便哪個(gè)抽屜里面放一個(gè)物體. 依次類推,直到每個(gè)抽屜都有兩個(gè)物體了,再到每個(gè)抽屜都有三個(gè)物體......
長(zhǎng)春市閉式: ______ 抽屜原理1:將多于n件的物品任意放到n個(gè)抽屜中,那么至少有一個(gè)抽屜中的物品件數(shù)不少于2件.抽屜原理2:將多于mxn件的物品任意放到n個(gè)抽屜中,那么至少有一個(gè)抽屜中的物品的件數(shù)不少于(m+1)件.抽屜原理的本質(zhì)是最差原則,很多題目不能直接用抽屜原理來(lái)解答的,均可以通過(guò)最差原則來(lái)求解.
長(zhǎng)春市閉式: ______ 抽屜原理 日常生活中,人們只要稍加留意,就不難發(fā)現(xiàn)某些帶有規(guī)律性的事物.比如,將10個(gè)蘋果放進(jìn)9個(gè)抽屜,那么肯定有一個(gè)抽屜里放進(jìn)了兩個(gè)或更多的蘋果.這是大家都能理解的一個(gè)簡(jiǎn)單道理,該道理即被稱為抽屜原理或鴿籠原理(以鴿子...
長(zhǎng)春市閉式: ______ 桌上有十個(gè)蘋果,要把這十個(gè)蘋果放到九個(gè)抽屜里,無(wú)論怎樣放,我們會(huì)發(fā)現(xiàn)至少會(huì)有一個(gè)抽屜里面放不少于兩個(gè)蘋果.這一現(xiàn)象就是我們所說(shuō)的“抽屜原理”. 抽屜原理的一般含義為:“如果每個(gè)抽屜代表一個(gè)集合,每一個(gè)蘋果就可以代表一個(gè)元素,假如有n+1個(gè)元素放到n個(gè)集合中去,其中必定有一個(gè)集合里至少有兩個(gè)元素.” 抽屜原理有時(shí)也被稱為鴿巢原理.它是組合數(shù)學(xué)中一個(gè)重要的原理
長(zhǎng)春市閉式: ______ 認(rèn)識(shí)的人數(shù)目為1-24,有25個(gè)人,所以至少有兩人認(rèn)識(shí)的人一樣多 根據(jù)是抽屜原理: 桌上有十個(gè)蘋果,要把這十個(gè)蘋果放到九個(gè)抽屜里,無(wú)論怎樣放,有的抽屜可以放一個(gè),有的可以放兩個(gè),有的可以放五個(gè),但最終我們會(huì)發(fā)現(xiàn)至少我們可以找到一個(gè)抽屜里面至少放兩個(gè)蘋果.這一現(xiàn)象就是我們所說(shuō)的抽屜原理. 抽屜原理的一般含義為:“如果每個(gè)抽屜代表一個(gè)集合,每一個(gè)蘋果就可以代表一個(gè)元素,假如有n+1或多于n+1個(gè)元素放到n個(gè)集合中去,其中必定至少有一個(gè)集合里至少有兩個(gè)元素.”
長(zhǎng)春市閉式: ______ 抽屜原理 日常生活中,人們只要稍加留意,就不難發(fā)現(xiàn)某些帶有規(guī)律性的事物.比如,將10個(gè)蘋果放進(jìn)9個(gè)抽屜,那么肯定有一個(gè)抽屜里放進(jìn)了兩個(gè)或更多的蘋果.這是大家都能理解的一個(gè)簡(jiǎn)單道理,該道理即被稱為抽屜原理或鴿籠原理(以鴿子...
長(zhǎng)春市閉式: ______[答案] 桌上有十個(gè)蘋果,要把這十個(gè)蘋果放到九個(gè)抽屜里,無(wú)論怎樣放,有的抽屜可以放一個(gè),有的可以放兩個(gè),有的可以放五個(gè),但最終我們會(huì)發(fā)現(xiàn)至少我們可以找到一個(gè)抽屜里面至少放兩個(gè)蘋果.這一現(xiàn)象就是我們所說(shuō)的抽屜原理. 抽屜原理的一般含義...
長(zhǎng)春市閉式: ______ 桌上有十個(gè)蘋果,要把這十個(gè)蘋果放到九個(gè)抽屜里,無(wú)論怎樣放,有的抽屜可以放一個(gè),有的可以放兩個(gè),有的可以放五個(gè),但最終我們會(huì)發(fā)現(xiàn)至少我們可以找到一個(gè)抽屜里面至少放兩個(gè)蘋果.這一現(xiàn)象就是我們所說(shuō)的抽屜原理. 抽屜原理的一般含義為:“如果每個(gè)抽屜代表一個(gè)集合,每一個(gè)蘋果就可以代表一個(gè)元素,假如有n+1或多于n+1個(gè)元素放到n個(gè)集合中去,其中必定至少有一個(gè)集合里至少有兩個(gè)元素.” 抽屜原理有時(shí)也被稱為鴿巢原理(“如果有五個(gè)鴿子籠,養(yǎng)鴿人養(yǎng)了6只鴿子,那么當(dāng)鴿子飛回籠中后,至少有一個(gè)籠子中裝有2只鴿子”).它是德國(guó)數(shù)學(xué)家狄利克雷首先明確的提出來(lái)并用以證明一些數(shù)論中的問(wèn)題,因此,也稱為狄利克雷原理.它是組合數(shù)學(xué)中一個(gè)重要的原理.
長(zhǎng)春市閉式: ______ 抽屜原理的一般含義為:“如果每個(gè)抽屜代表一個(gè)集合,每一個(gè)蘋果就可以代表一個(gè)元素,假如有n+1或多于n+1個(gè)元素放到n個(gè)集合中去,其中必定至少有一個(gè)集合里至少有兩個(gè)元素.”抽屜原理有時(shí)也被稱為鴿巢原理(“如果有五個(gè)鴿子籠,養(yǎng)鴿人養(yǎng)了6只鴿子,那么當(dāng)鴿子飛回籠中后,至少有一個(gè)籠子中裝有2只鴿子”).它是德國(guó)數(shù)學(xué)家狄利克雷首先明確的提出來(lái)并用以證明一些數(shù)論中的問(wèn)題,因此,也稱為狄利克雷原理.它是組合數(shù)學(xué)中一個(gè)重要的原理.
長(zhǎng)春市閉式: ______ 在計(jì)數(shù)時(shí),必須注意無(wú)一重復(fù),無(wú)一遺漏.為了使重疊部分不被重復(fù)計(jì)算,人們研究出一種新的計(jì)數(shù)方法,這種方法的基本思想是:先不考慮重疊的情況,把包含于某內(nèi)容中的所有對(duì)象的數(shù)目先計(jì)算出來(lái),然后再把計(jì)數(shù)時(shí)重復(fù)計(jì)算的數(shù)目排斥出去,使得計(jì)算的結(jié)果既無(wú)遺漏又無(wú)重復(fù),這種計(jì)數(shù)的方法稱為容斥原理.