www.tjgcgs88.cn-狠狠久久亚洲欧美专区不卡,久久精品国产99久久无毒不卡,噼里啪啦国语版在线观看,zσzσzσ女人极品另类

  • <strike id="qgi8o"><td id="qgi8o"></td></strike>
  • <ul id="qgi8o"><acronym id="qgi8o"></acronym></ul>
  • <li id="qgi8o"></li>
    <ul id="qgi8o"></ul>
    <strike id="qgi8o"><rt id="qgi8o"></rt></strike>
    <ul id="qgi8o"><center id="qgi8o"></center></ul>
  • <kbd id="qgi8o"></kbd>

    急急急求關(guān)于運籌學的最小費用最大流的英文文獻,有中英文翻譯更佳!!!!!!!!!! 求運籌學的中英文對照文章

    下面先是漢語-----
    【MCMF問題及數(shù)學模型】

    在介紹最大流問題時,我們列舉了一個最大物資輸送流問題。如果這個問題的已知條件還包括每條邊運送單位物資的費用,那么怎樣運送,才能得到最大運輸量,并且輸送費用最少?這便是所謂最小費用最大流問題。
    在最大流的有關(guān)定義的基礎(chǔ)上,若每條有向邊除權(quán)數(shù)c(e)(表示邊容量)外還有另外一個權(quán)數(shù)w(e)(表示單位流所需費用),并且已求得該網(wǎng)絡(luò)的最大流值為F, 那么最小費用最大流問題,顯然可用以下線性規(guī)劃模型加以描述:

    Min ∑ w(e)f(e)
    e∈E

    滿足 0≤f(e)≤c(e) ,對一切e∈E
    f+(v)=f-(v) ,對一切v∈V
    f+(x)=F (最大流約束)
    (或f-(y)=F )

    【算法思路】

    解決最小費用最大流問題,一般有兩條途徑。一條途徑是先用最大流算法算出最大流,然后根據(jù)邊費用,檢查是否有可能在流量平衡的前提下通過調(diào)整邊流量,使總費用得以減少?只要有這個可能,就進行這樣的調(diào)整。調(diào)整后,得到一個新的最大流。
    然后,在這個新流的基礎(chǔ)上繼續(xù)檢查,調(diào)整。這樣迭代下去,直至無調(diào)整可能,便得到最小費用最大流。這一思路的特點是保持問題的可行性(始終保持最大流),向最優(yōu)推進。另一條解決途徑和前面介紹的最大流算法思路相類似,一般首先給出零流作為初始流。這個流的費用為零,當然是最小費用的。然后尋找一條源點至匯點的增流鏈,但要求這條增流鏈必須是所有增流鏈中費用最小的一條。如果能找出增流鏈,則在增流鏈上增流,得出新流。將這個流做為初始流看待,繼續(xù)尋找增流鏈增流。這樣迭代下去,直至找不出增流鏈,這時的流即為最小費用最大流。這一算法思路的特點是保持解的最優(yōu)性(每次得到的新流都是費用最小的流),而逐漸向可行解靠近(直至最大流時才是一個可行解)。
    由于第二種算法和已介紹的最大流算法接近,且算法中尋找最小費用增流鏈,可以轉(zhuǎn)化為一個尋求源點至匯點的最短路徑問題,所以這里介紹這一算法。

    在這一算法中,為了尋求最小費用的增流鏈,對每一當前流,需建立伴隨這一網(wǎng)絡(luò)流的增流網(wǎng)絡(luò)。例如圖 1 網(wǎng)絡(luò)G 是具有最小 費用的流,邊旁參數(shù)為c(e) , f(e) , w(e),而圖 2 即為該網(wǎng)絡(luò)流 的增流網(wǎng)絡(luò)G′。增流網(wǎng)絡(luò)的頂點和原網(wǎng)絡(luò)相同。 按以下原則建 立增流網(wǎng)絡(luò)的邊:若G中邊(u,v)流量未飽,即f(u,v) < e(u,v),則G ' 中建邊(u,v),賦權(quán)w ' (u,v)=w(u,v);若G中邊(u, v)已有流量,即f(u,v)〉0,則G′中建邊(v,u),賦權(quán)w′(v,u) =-w(u,v)。建立增流網(wǎng)絡(luò)后,即可在此網(wǎng)絡(luò)上求源點至匯點的最短路徑,以此決定增流路徑,然后在原網(wǎng)絡(luò)上循此路徑增流。這里,運用的仍然是最大流算法的增流原理,唯必須選定最小費用的增流鏈增流。
    計算中有一個問題需要解決。這就是增流網(wǎng)絡(luò)G ′中有負權(quán)邊,因而不能直接應(yīng)用標號法來尋找x至y的最短路徑,采用其它計算有負權(quán)邊的網(wǎng)絡(luò)最短路徑的方法來尋找x至y的最短路徑,將 大大降低計算效率。為了仍然采用標號法計算最短路徑,在每次建立增流網(wǎng)絡(luò)求得最短路徑后,可將網(wǎng)絡(luò)G的權(quán)w(e)做一次修正,使再建的增流網(wǎng)絡(luò)不會出現(xiàn)負權(quán)邊,并保證最短路徑不至于因此而改變。下面介紹這種修改方法。
    當流值為零,第一次建增流網(wǎng)絡(luò)求最短路徑時,因無負權(quán)邊,當然可以采用標號法進行計算。為了使以后建立增流網(wǎng)絡(luò)時不出現(xiàn)負權(quán)邊,采取的辦法是將 G中有流邊(f(e)>0)的權(quán)w(e)修正為0。為此, 每次在增流網(wǎng)絡(luò)上求得最短路徑后,以下式計算G中新的邊權(quán)w " (u,v):

    w " (u,v)=L(u)-L(v)+w(u,v) (*)

    式中 L(u),L(v) -- 計算G′的x至y最短路徑時u和v的標號值。第一次求最短徑時如果(u,v)是增流路徑上的邊, 則據(jù)最短 路徑算法一定有 L(v)=L(u)+w ' (u,v)=L(u)+w(u,v), 代入(*)式必有

    w〃(u,v)=0。

    如果(u,v)不是增流路徑上的邊,則一定有:
    L(v)≤L(u)+w(u,v),
    代入(*)式則有 w(u,v)≥0。

    可見第一次修正w(e)后,對任一邊,皆有w(e)≥0, 且有流 的邊(增流鏈上的邊),一定有w(e)=0。以后每次迭代計算,若 f(u,v)>0,增流網(wǎng)絡(luò)需建立(v,u)邊,邊權(quán)數(shù)w ' (v,u)=-w(u,v) =0,即不會再出現(xiàn)負權(quán)邊。
    此外,每次迭代計算用(*)式修正一切w(e), 不難證明對每一條x至y的路徑而言,其路徑長度都同樣增加L(x)-L(y)。因此,x至y的最短路徑不會因?qū)(e)的修正而發(fā)生變化。

    【計算步驟】

    1. 對網(wǎng)絡(luò)G=[V,E,C,W],給出流值為零的初始流。
    2. 作伴隨這個流的增流網(wǎng)絡(luò)G′=[V′,E′,W′]。
    G′的頂點同G:V′=V。
    若G中f(u,v)<c(u,v),則G′中建邊(u,v),w(u,v)=w(u,v)。
    若G中f(u,v)>0,則G′中建邊(v,u),w′(v,u)=-w(u,v)。
    3. 若G′不存在x至y的路徑,則G的流即為最小費用最大流,
    停止計算;否則用標號法找出x至y的最短路徑P。
    4. 根據(jù)P,在G上增流: 對P的每條邊(u,v),若G存在(u,v),則(u,v)增流;若G存在(v,u),則(v,u)減流。增(減)流后,應(yīng)保證對任一邊有c(e)≥ f(e)≥0。
    5. 根據(jù)計算最短路徑時的各頂點的標號值L(v),按下式修 改G一切邊的權(quán)數(shù)w(e):

    L(u)-L(v)+w(e)→w(e)。

    6. 將新流視為初始流,轉(zhuǎn)2。
    -----------------
    ======================
    下面是英文-----

    【MCMF problems and the mathematical model】

    Maximum flow problem in the introduction, we listed one of the largest flow of goods delivery. If this issue also includes the known conditions of delivery of each unit while the cost of goods, then how to transport, to get the most traffic, and transportation costs to a minimum? This is the so-called maximum flow problem minimum cost.
    The maximum flow based on the definition, if each side of a first-priority claim to the number of c (e) (that the edge capacity) but also have another weights w (e) (that the unit cost flow), and has been seeking a maximum flow of the network value of F, then the minimum cost maximum flow problem, it is clear the following linear programming model can be used to describe:

    Min ∑ w (e) f (e)
    e ∈ E

    Satisfy 0 ≤ f (e) ≤ c (e), for all e ∈ E
    f + (v) = f-(v), for all v ∈ V
    f + (x) = F (maximum flow constraints)
    (Or f-(y) = F)

    】 【Algorithm ideas

    Solve the minimum cost maximum flow problem, there are two general ways. Way is to use a maximum flow algorithm to calculate the maximum flow, and then based on the cost side, check whether it is possible to balance the flow by adjusting the flow side, so that to reduce the total cost? As long as there is a possibility, on such adjustments. After adjusting for a new maximum flow.
    Then, on the basis of the new flow to continue to check and adjust. This iteration continues until no adjustment may be, they will have the minimum cost maximum flow. The characteristics of this line of thought is to maintain the feasibility of the problem (always maintain maximum flow), to promote optimal. Solution to another and in front of the maximum flow algorithm, introduced a similar line of thought, first of all, given the general flow as the initial flow of zero. The cost of the flow to zero, of course, is the smallest cost. And then find a source to the Meeting Point by flow chain, but by the requirements of this chain must be a stream flow of all chain costs by a minimum. If we can find out by flow chain, the chain in the flow by increasing flow, a new flow. The flow will be treated as the initial flow, continue to search for links by increasing stream flow. This iteration continues, until found by flow chain, then the flow is the minimum cost maximum flow. Idea of the characteristics of this algorithm is to maintain the optimal solution of (each of the new fees are the smallest stream flow), but gradually close to the feasible solution (up to maximum flow is a feasible solution when).
    As a result of the second algorithm and has introduced close to the maximum flow algorithm and the algorithm by finding the minimum cost flow chain, can be turned into a source to find the shortest path to the Meeting Point, so this algorithm here.

    In this algorithm, in order to seek to increase the minimum cost flow chain, the current flow of each, accompanied by the need to establish a network flow by the flow network. For example, Figure 1 is a network G of minimum cost flow, next to parameters c (e), f (e), w (e), and Figure 2 is the network flow by the flow network G '. By the peak-flow network and the same as the original network. By the following principles in accordance with the establishment of the network edge flow: If G in the edge (u, v) is not enough traffic, that is, f (u, v) <e (u, v), then G 'in the building edge (u, v), Empowering w '(u, v) = w (u, v); edge of G if (u, v) has been the flow, that is, f (u, v)> 0, then G' in the building edge (v, u ), to empower the w '(v, u) =- w (u, v). The establishment of the network by streaming, you can seek in this network to the Meeting Point source shortest path, as decided by flow path, and then in the original network by flow in this path. Here, the use of maximum flow algorithm is still the principle of increasing flow, but the cost must be selected by the smallest chain by stream flow.
    Calculation, there is a need to address the problem. This is the stream network by G 'the right to have a negative side, thus labeling law can not be directly applied to find x to y of the shortest path, using the right of other negative side computing network approach to the shortest path x to y to find the shortest path, will greatly reduce the computational efficiency. In order to still use the labeling method to calculate the shortest path, each flow set up by the network to achieve the shortest path, the network G can be the right of w (e) an amendment to do so by the stream to build the network will not be a negative right side, and guarantee the shortest path does not change. This modified method described below.
    When the flow value is zero, the first built by the shortest path for flow network, the result of non-negative right side, of course, can be used to calculate labeling law. In order to increase flow network after the establishment of a negative time is not right side of the approach taken is to have stream G edge (f (e)> 0) the right to w (e) amendment to 0. To this end, each time a flow network obtained by the shortest path, the following computing G in the right side of the new w "(u, v):

    w "(u, v) = L (u)-L (v) + w (u, v) (*)

    Where L (u), L (v) - calculation of G 'of the shortest path x to y when u and v the value of the label. For the first time if the shortest path (u, v) is the flow path by the edge, then, according to the shortest path algorithm must have L (v) = L (u) + w '(u, v) = L (u) + w (u, v), substituting into (*) type must

    w "(u, v) = 0.

    If (u, v) rather than by the side of flow path, it must have:
    L (v) ≤ L (u) + w (u, v),
    Into the (*)-type, there w (u, v) ≥ 0.

    Shows that the first amendment to w (e), against either side, there are w (e) ≥ 0, and a stream side (by side chain flow), there will be w (e) = 0. Calculated after each iteration, if f (u, v)> 0, by the need to establish the network flow (v, u) edge, edge weights w '(v, u) =- w (u, v) = 0, that is, the right will not be a negative side.
    In addition, the calculation of each iteration with (*) fixes all the w (e), it is not difficult to prove that to each path x to y, its all the same to increase the path length L (x)-L (y). Therefore, x and y will not be the shortest path to w (e) the amendment changes.

    】 【Calculation steps

    1. On the network G = [V, E, C, W], given the initial value is zero flow streams.
    2. Be accompanied by this stream flow network G '= [V', E ', W'].
    G 'the vertex-G: V' = V.
    If G in f (u, v) <c (u, v), then G 'in the building edge (u, v), w (u, v) = w (u, v).
    If G in f (u, v)> 0, then G 'in the building edge (v, u), w' (v, u) =- w (u, v).
    3. If G 'does not exist the path x to y, then G is the minimum cost flow of maximum flow,
    To stop calculation; otherwise labeling method used to find x to y of the shortest path P.
    4. According to P, the increased flow in G: each edge of P of (u, v), if G exists (u, v), then (u, v) by flow; if G exists (v, u), while (v, u) by flow. Increase (decrease) in flow should be on either side to ensure that there is c (e) ≥ f (e) ≥ 0.
    5. According to the calculation of the shortest path at the time of peak value of the label L (v), press the G-type modification of all the edge weights w (e):

    L (u)-L (v) + w (e) → w (e).

    6. The new stream as the initial flow to 2.
    =========
    希望能滿足您的要求----

    急急急求關(guān)于運籌學的最小費用最大流的英文文獻,有中英文翻譯更佳...
    這里,運用的仍然是最大流算法的增流原理,唯必須選定最小費用的增流鏈增流。 計算中有一個問題需要解決。這就是增流網(wǎng)絡(luò)G ′中有負權(quán)邊,因而不能直接應(yīng)用標號法來尋找x至y的最短路徑,采用其它計算有負權(quán)邊的網(wǎng)絡(luò)最短路徑的方法來尋找x至y的最短路徑,將 大大降低計算效率。為了仍然采用標號法計算最短路徑,...

    運籌學最大流和最小割怎么求
    接下來,我們討論如何通過最小割(minimumcut)來阻斷水流。要使水流完全不通,至少需要割斷哪些管子呢?答案是割斷s->a(容量為2)和b->t(容量為3)。因此,最小割也是2+3=5。總結(jié)最大流與最小割的關(guān)系,我們可以得出一個簡潔的最大流等于最小割。換句話說,最大流的流量取決于必須通過的水管...

    運籌學最大流和最小割怎么求
    綜上所述,最大流與最小割之間存在一種對應(yīng)關(guān)系,即最大流的量等于最小割的量。最大流最小割定理可以簡潔地表述為:最大流的量取決于必須通過的那些管道的最小割的量,也就是說,要實現(xiàn)最大的流量,必須通過那些容量最小的管道,而這些管道的容量之和就是最大流的量。

    ff算法求最大流
    FF算法(Ford-Fulkerson算法)是一種用于求解網(wǎng)絡(luò)最大流的算法。網(wǎng)絡(luò)流問題是計算機科學和運籌學中的一個重要問題,涉及到在一個有向圖中,從源節(jié)點到匯節(jié)點的最大流量。FF算法,即Ford-Fulkerson算法,是解決這類問題的經(jīng)典方法之一。FF算法的基本思想是通過不斷尋找增廣路徑來增加網(wǎng)絡(luò)中的流量,直到找...

    網(wǎng)絡(luò)流的最小費用流算法
    由此可見,最短路問題是最小費用流問題的基礎(chǔ)。現(xiàn)已有一系列求最短路的成功方法。最小費用流(或最小費用最大流)問題 ,可以交替使用求解最大流和最短路兩種方法,通過迭代得到解決。二.圈算法:1) 利用Ford和Fulkson標號算法找出流量為F(<=最大流)的流f.2) 構(gòu)造f對應(yīng)的調(diào)整容量的流網(wǎng)絡(luò)N'(f).3) 搜索N'(...

    運籌學最大流問題?
    每一個中間點進去的總流量等于出去的總流量。流量小于等于容量 比如上面這個圖,括號中給出的是初始流量。V1發(fā)出6+10=16,V7收到7+3+6=16 V2收到6+3=9,發(fā)出6+3=9 V3收到10,發(fā)出3+0+7=10 V4\/V5\/V6亦是如此 你的圖我看得有點模糊,你自己做一下即可。

    幫忙解答一道最大流問題,謝謝。
    運用Ford和Fulkerson標號算法,求最大流的過程就是找增廣路的過程 第一條增廣路v1-v5-v7,最大流為10 第二條增廣路v1-v2-v5-v7,最大流為16-10=6 第三條增廣路v1-v2-v4-v7,最大流為12-6=6 第四條增廣路v1-v6-v7,最大流為9 第五條增廣路v1-v3-v6-v7,最大流為18-9=9 第...

    關(guān)于運籌學中求最大流問題詳細步驟:
    關(guān)于運籌學中求最大流問題詳細步驟:  我來答 你的回答被采納后將獲得: 系統(tǒng)獎勵15(財富值+成長值)+難題獎勵30(財富值+成長值)1個回答 #熱議# 先人一步,探秘華為P50寶盒 百度網(wǎng)友54c1263 2015-06-10 · TA獲得超過542個贊 知道小有建樹答主 回答量:435 采納率:71% 幫助的人:77.1萬 我...

    運籌學 求下列網(wǎng)絡(luò)的最大流與最小截集。弧旁的數(shù)字為其容量。 在等大神...
    最大流:20,見附件

    運籌學,求最大流量問題!詳細步驟!
    2019-04-28 運籌學題目,怎么求這道題的最大流(有容量,無流量),過程。急 1 2014-06-24 運籌學最大流問題建模 1 2013-06-26 運籌學用標號法求網(wǎng)絡(luò)最大流問題的類型題 2012-01-04 管理運籌學 最小費用最大流問題 3道 。希望能幫我講一下詳細... 2 2012-01-24 運籌學,最小費用最大流問題...

    相關(guān)評說:

  • 釗軟19787805936: 求運籌學 求下列指派問題(min)(要求寫出解和值) c=求下列指派問題(min)(要求寫出解和值) c=3 12 3 11 9 5 7 5 10 3 7 3 2 5 54 8 5 7 7 8 4 7 4 9 -
    屏南縣二號: ______[答案] 解為00100 最小費用為3+3+3+4+4=17 00001 01000 00010
  • 釗軟19787805936: 最小費用最大流問題的解決方法 -
    屏南縣二號: ______ 解決最小費用最大流問題,一般有兩條途徑.一條途徑是先用最大流算法算出最大流,然后根據(jù)邊費用,檢查是否有可能在流量平衡的前提下通過調(diào)整邊流量,使總費用得以減少?只要有這個可能,就進行這樣的調(diào)整.調(diào)整后,得到一個新的最...
  • 釗軟19787805936: 容量Cij是弧(i,j)的實際通過量; - 上學吧普法考試
    屏南縣二號: ______ 伏格爾法(Vogel Method) 什么是伏格爾法 最小元素法的缺點是,為了節(jié)約一處的費用,有時造成在其他處要多花幾倍的運費. 伏格爾法又稱差值法,該方法考慮到,某產(chǎn)地的產(chǎn)品如不能按最小運費就近供應(yīng),就考慮次小運費,這就有一個差額.差額越大,說明不能按最小運費調(diào)運時,運費增加越多.因而對差額最大處,就應(yīng)當采用最小運費調(diào)運.
  • 釗軟19787805936: 運籌學的運輸問題的成本函數(shù) -
    屏南縣二號: ______ 是可以的 但是有一定限制 沒有具體函數(shù) 這是一種單純形法的變形 單純形法的名感性問題只能確定范圍所以這個問題也只能確定范圍 如果要確定函數(shù)必須對檢驗時每個運價的范圍內(nèi)進行假設(shè) 幾乎以你手算要一兩天才能完全寫出函數(shù) 這個問題涉及到具體問題具體分析 首先你要有一個初始解(必須用數(shù)字求的)這時候進行檢驗一定會是成功的 然后你改變某個運價為原運價+x 這樣保證檢驗成功可得到范圍 如果要寫函數(shù) 就要突破范圍取值具體范圍要具體分析
  • 釗軟19787805936: 運籌學中主元素的確定,求最小值.首先確定檢驗數(shù)最小的為主列,由b/aij那個是大的還是小的為主元素. -
    屏南縣二號: ______ 求最小值: 首先確定 負 檢驗數(shù)最小的為主列,由b/aij 中最小的對應(yīng)的 aij 為主元素(aij > 0),這個原則是不變的. 二階段法的時候又出現(xiàn)大的為主元素 原因估計是 小的比值 對應(yīng)的 aij < 0.
  • 釗軟19787805936: 現(xiàn)有3個產(chǎn)地A1,A2,A3,產(chǎn)量非別為8,5,9 試求運費最小的調(diào)運方案 運籌學 -
    屏南縣二號: ______ source對應(yīng)的是A source1-A1 Destination對應(yīng)的是B destination1-B1 shipment是運輸量,也就是從A到B的大小 最優(yōu)值是49,方案如上圖
  • 釗軟19787805936: 急求一運籌學題答案!!!!要詳細過程!!謝謝! -
    屏南縣二號: ______ 因為是極大化指派問題,故選取最大的效率值10(丙B),用該值分別減去各效率值,得: 4 8 7 9 3 6 7 8 2 0 3 7 3 3 5 6 求該問題的極小化問題就是求原問題的極大化問題. (1)各行減去該行最小值,得 0 4 3 5 0 3 4 5 2 0 3 7 0 0 2 3 (2)各列減去...
  • 釗軟19787805936: 哪位同學有2013年824運籌學的考綱提供下吧 謝謝
    屏南縣二號: ______ 考試科目代碼824考試科目名稱運籌學參考書目 《運籌學》錢頌迪,清華大學出版社(修訂版);《運籌學》(第二版)黨耀國等,科學出版社 2012年 考試大綱一、課程性質(zhì)《運籌學》是南京航空航天大學系統(tǒng)工程、管理科學與工程、工業(yè)工...
  • 釗軟19787805936: 管理運籌學第2次作業(yè) -
    屏南縣二號: ______ 1規(guī)劃的目的是( ) 合理利用和調(diào)配人力、物力,以取得最大收益.合理利用和調(diào)配人力、物力,使得消耗的資源最少.合理利用和調(diào)配現(xiàn)有的人力、物力,消耗的資源最少,收益最大.合理利用和調(diào)配人力、物力,消耗的資源最少,收益最大...
  • 国产精品高清一区二区三区久久你| 国产精品久久久久久福利69堂| 久久精品女人天堂AV免费观看| 伊人久久综合精品无码av专区| 国产精品婷婷久久久久久| 少妇厨房愉情理伦BD在线观看| 亚洲欧美日本在线播放| 欧美中日韩免费观看网站| 午夜精品一区二区三区免费视频| 国产精品久久久久久亚洲伦理|