在直角三角形ABC中,角C=90度,O是BC上一點,以O(shè)B為半徑作圓O交AB于D,交BC于E,角A=30度, 如圖,在Rt三角形abc中,角C=90度,以AC為直徑作圓O...
如圖,連結(jié)DE,
∵∠C=90°,∠A=30°,
∴∠B=60°,
∵BE是圓O直徑,
∴∠BDE=90°(直徑所對的圓周角是90°)
∴∠BED=30°,
∴BD=1/2BE(30°角所對的直角邊等于斜邊的一半)
即直徑BE=2BD=12(cm)
解:答案選A
已知∠A = 30°,∠C = 90°,所以∠B = 60°
∵ 以O(shè)為圓心,OB為半徑作圓,交BA于D
∴ OB = OD (都為半徑)
∴ 在等腰△OBD中,∠B = 60°
∴ △OBD為等邊三角形
∴ OB = OD = BD = 6
∴ 圓O的直徑 = 6 x 2 = 12
畫圖就可以得到B,D,E都是圓O上的點,則OB=OD=OE=6(不用去管角A),又因為E.O.B在同一條直線上面,所以EB就是直徑,EB=OE+OB=6+6=12
在直角三角形ABC中,角C=90度,O是BC上一點,以O(shè)B為半徑作圓O交AB于D,交...
∵∠C=90°,∠A=30°,∴∠B=60°,∵BE是圓O直徑,∴∠BDE=90°(直徑所對的圓周角是90°)∴∠BED=30°,∴BD=1\/2BE(30°角所對的直角邊等于斜邊的一半)即直徑BE=2BD=12(cm)
在三角形ABC中,角C=90度,O為BC邊上一點,以O(shè)為圓心,OB為半徑作半圓與BC...
需證明∠A=∠FEA ∠FEA=180-∠FEB ∵EF為半圓O的切線,∴OE⊥EF,∴∠OEF=90,∠DEF=∠B ∵BD為直徑,∴∠BED=90 ∵∠FEB=∠DEF+∠BED=∠B+90 ∴∠FEA=180-∠FEB=180-90-∠B=90-∠B ∵三角形ABC為直角三角形,且∠C=90 ∴∠A=90-∠B ∴∠A=∠FEA ∴三角形FAE為等腰三角形 ...
如圖。在三角形ABC中,角ABC等于90度
o為ac中點 所以bo為三角形abc中位線 所以bo=1\/2ac (直角三角形斜邊中線等于斜邊一半)因為bo=do 所以ob=oc=oa=od 在三角形bcd中,有oc=ob=od=1\/2bd(斜邊中線等于斜邊一半)所以三角形bcd為直角三角形
三角形ABC中,角C=90度,O是AB中的,E在BC上,角COE=90°,證明CE方=AO方+...
我可以證明CE2=AC2+BE2但怒能證明CE2=AO2+BE2請檢查題目
在三角形ABC中,角C=90度,AD是角BAC的平分線,O是AB上一點,以O(shè)A為半徑的...
因為:AD是角BAC的平分線 所以:角CAD=角DAB 又因為:OA為半徑的圓經(jīng)過D 所以:OA=OD 所以:角DAB=角ODA 又:角C=90度 所以:角CAD+角CDA=90度(直角三角形兩銳角和等于90度)所以:角DAB+角CDA=90度 所以:角ODA+角CDA=90度 所以:OD垂直于BC 所以:BC是圓O的切線 ...
如圖,在直角已知Rt三角形ABC中,角c=90度,點o在AB上,以o為圓心OA為半徑...
(1)BD為圓O的切線;(2)BD=5\/2
如圖,在三角形abc中,角c=90度,ad是角bac的平分線,o是ab上一點,以oa為...
(1)、太簡單了,連接od,因為ad是角bac的平分線,所以角bad=角dac,已知角c=90度,所以角dac+角adc=90度,也就是角bad+角adc=90度。半徑od=半徑oa,所以角oda=角oad。因此角oda+角adc=90度。所以od垂直bc。所以bc是圓o的切線;(2)、bd=√3,角b=30度,設(shè)半徑od為x,所以ob=2x。
在三角形abc中,角c等于90度,ac等于3,bc等于4,o為bc上一點,以o為圓心,o...
問一:證明:因為:以O(shè)為圓心交點,BD通過圓心為直徑,所以,根據(jù)園定理直徑對應(yīng)角BED為直角。因為角EDB+角EBD=角A+角EBD=90度,所以角EDB=角A.同理角EDB+EBD=角AEF+角FED;因為角FED=角EBD所以角A=角AEF.\/AF=EF所以三角形AEF為等腰三角行 ...
在直角三角形abc中角c等于90度,以點O為圓心,OA為圓弧
1)因為 角C=90度,OD⊥BC 所以 OD\/\/AC,OD\/AC=OB\/AB 設(shè) ⊙O半徑=r 即 OD=OA=OF=OE=r 又 AC=6,AB=10 故:BC=10 所以 r\/6=(10-r)\/10 解得:r=15\/4 (2)若四邊形BDEF是平行四邊形,EF=BD=2CD,即BO=2AO 所以 FO=FB=ED 又OF\/\/ED,所以O(shè)FDE是平行四邊形 由于OF=OE,所...
求這個直角三角形各邊的長
如圖所示,在Rt三角形ABC中,角C=90度,○O為三角形ABC的內(nèi)切圓,切點分別為D,E,F,若已知AB:BC=25:7,其內(nèi)切圓半徑r=1.2,求這個直角三角形各邊的長。AB:AC:BC=25:24:7 內(nèi)切圓半徑r=(AC+BC-AB)\/2 內(nèi)切圓半徑r=1.2 得AB=10,AC=9.6,BC=2.8 ...
相關(guān)評說:
馬山縣粗牙: ______ ∵AC//BD∴連A和BD中點E得AE//BC且∠C=90°∴AE是⊿ABD底邊的中垂線又∵SAS可證⊿AEB≌⊿AED即∠BAE=∠DAE∴AE也是∠BAD的平分線.即可由 “三線合一”證得⊿ABD為等腰⊿.若Rt⊿中有30°則⊿ABD為等邊⊿.
馬山縣粗牙: ______[答案] AB=√(AC^2+BC^2)=10;BC'=BC=6,則AC'=4. ∠BC'D=∠C=90°,則∠AC'D=∠C=90°; 又∠A=∠A,故⊿AC'D∽⊿ACB,AC'/AC=AD/AB. 即:4/8=AD/10,AD=5,CD=AC-AD=3,BD=√(CD^2+BC^2)=3√5.
馬山縣粗牙: ______[答案] 首先,直接根據(jù)勾股定理得AB=5,做AB的高CO與AB交與O,面積法,CO=12/5... 因為CD=CA(圓的半徑),而CO垂直于AB,所以CO也是AD的中垂線,即O是AD的中點,再由勾股定理,AO=9/5,所以AD=18/5...
馬山縣粗牙: ______ a^2+b^2=225 a=3/4*b a=9,b=12
馬山縣粗牙: ______ 在直角三角形ABC中,角c等于90度,AC等于2BC,求角A的三個三角函數(shù) AB=根號5BC sinA=BC/AB=1/根號5 cosA=AC/AB=2/根號5 tanA=1/2
馬山縣粗牙: ______[答案] 設(shè)BC=x,則AB=x+1.根據(jù)勾股弦定理,5^2+x^2=(x+1)^2=x^2+2x+1 解得 x=12 則 BC=12,AB=12+1=13.
馬山縣粗牙: ______ 設(shè)bc=3k,ac=4k,因為角c=90,由勾股定理的ab的方=bc的方+ac的方,所以ab=5k,又因為ab=10,所以k=2,所以bc=6,ac=8.
馬山縣粗牙: ______[答案] 證明 已知ΔABC是直角三角形,AB為斜邊,記AB=c,BC=a,CA=b.則有: c^2=a^2+b^2.(1) 滿足:S(PAB)=S(PBC)=S(PCA),易證P是RtΔABC的重心. 設(shè)mc,ma,mb分別表示RtΔABC的對應(yīng)邊AB,BC,CA上的中線,則有 PC=2mc/3,PA=2ma/3,PB=2mb/3...
馬山縣粗牙: ______ c
馬山縣粗牙: ______ 解:AC=6,BC=8,則S三角形ABC=AC*BC/2=24; BE為中線,則S三角形BAE=(1/2)S三角形ABC=12;(同高的三角形面積比等于底之比) 又AD也為中線,連接DE,則DE/AB=EF/FB=1/2,則BF/BE=2/3. 故S三角形ABF=(2/3)S三角形ABE=(2/3)*12=8.