設(shè)事件ab為互不相容事件
互斥事件和對立事件有何區(qū)別?
一、互斥事件和對立事件的定義不同:1、互斥事件:事件A和B的交集為空,A與B就是互斥事件,也叫互不相容事件。也可敘述為:不可能同時發(fā)生的事件。如A∩B為不可能事件(A∩B=Φ),那么稱事件A與事件B互斥,其含義是:事件A與事件B在任何一次試驗中不會同時發(fā)生。2、對立事件:若A交B為不可能...
隨機事件A與B互不相容 什么意思
n個事件互不相容(也稱互斥),指其中任何一個事件的發(fā)生都將導致其他事件不能發(fā)生(當然也可以同時都不發(fā)生;必須得有一個發(fā)生的情況稱為對立),比如擲一次骰子得到點數(shù)1和6這兩個事件就互不相容。顯然,由于互不相容的事件有這種相關性,有P(A|B) = 0和P(B|A) = 0,一般也就不獨立了 ...
互不相容事件是指兩個事件同時發(fā)生嗎?
設A,B是兩事件,如果滿足等式P(A∩B)=P(AB)=P(A)P(B),則稱事件A,B相互獨立,簡稱A,B獨立。即事件B發(fā)生或不發(fā)生對事件A不產(chǎn)生影響,就說事件A與事件B之間存在某種“獨立性”,其對象可以是多個。互斥事件是指事件A和B的交集為空,也叫互不相容事件。也可敘述為:不可能同時發(fā)生的事件...
AB為互不相容事件,則P(B-A)是什么意思??
P(B-A) 是指從 *** B中剔除 *** A在B中的部分(也就是AB) 之后的概率,因為AB互不相容,AB=0.P(B-A)=P(B)-P(AB)=P(B).,10,概率,0,P(B-A)=P(B)-P(AB)=P(B),0,
什么是互不相容事件?
發(fā)生了A就不能發(fā)生B,發(fā)生了B就不能發(fā)生A.而相互獨立即使兩個事件各自發(fā)生與否與另一個事件的發(fā)生與否沒有關系;A和B獨立的意思就是,A發(fā)生和B發(fā)生沒有關系,A發(fā)生不會影響B(tài)發(fā)生,A和B也可能同時發(fā)生,不過A和B互不影響。設有A、B兩個集合 如果A、B互不相容,則A∩B=Φ,P(A∩B)= 0,...
若事件A與B為兩個互不相容的事件,P(B)>0,則P(A|B)=
事件A與B為兩個互不相容的事件 即 P(AB)=0 則 P(A|B)=P(AB)\/P(B)=0
設事件A與事件B互不相容,則( )A.P(.A.B)=0B.P(AB)=P(A)P(B)C.P(A...
因為A,B互不相容,所以P(AB)=0,對A選項,P(.A.B)=P(.A∪B)=2?P(A∪B),因為P(A∪B)不一定等于2,所以(A)不正確對B選項,當P(A),P(B)不為0時,(B)不成立對C選項,只有當A,B互為對立事件的時候才成立,(C)不成立對D選項,P(.A∪.B)=P(.AB)=2?P(...
互斥事件和相互獨立事件有什么區(qū)別和聯(lián)系
一、性質不同 1、互斥事件:事件A和B的交集為空,A與B就是互斥事件,也叫互不相容事件。也可敘述為:不可能同時發(fā)生的事件。如A∩B為不可能事件(A∩B=Φ),那么稱事件A與事件B互斥。2、相互獨立是設A,B是兩事件,如果滿足等式P(AB)=P(A)P(B),則稱事件A,B相互獨立,簡稱A,B獨立。
互斥和相容事件的區(qū)別?
2、判斷方式不同 如果事件A和事件B的交集為空,那么事件A和事件B可以被判斷為互不相容事件。如果事件A和事件B同時發(fā)生的概率等于事件A發(fā)生的概率乘事件B發(fā)生的概率,那么事件A和事件B可以被判斷為相互獨立的事件。3、計算上不同 在算事件A和事件B發(fā)生的概率時,在互不相容事件中,它的概率等于事件A...
設有事件A和事件B,那么AB表示什么意思?求解
AB為積事件表示事件A發(fā)生且事件B發(fā)生是個概率統(tǒng)計問題,相當于集合中的交集。定理:設A、B是互不相容事件(AB=φ),則:P(A∪B)=P(A)+P(B)推論1:設A1、 A2、?、 An互不相容,則:P(A1+A2+...+ An)= P(A1) +P(A2) +?+ P(An)推論2:設A1、 A2、?、 An構成完備事件...