已知直角三角形的三邊長,怎么求角呢?
已知直角三角形的三邊長,可以通過以下步驟求角度:
1. 使用三角函數計算角度。已知直角三角形的兩條直角邊和斜邊,可以根據三角函數的基本公式計算角度。例如,使用sin、cos或tan函數,配合已知邊長,可以求得相應的角度。
2. 利用勾股定理計算角度。直角三角形中,斜邊平方等于兩直角邊平方之和。可以通過計算得出的斜邊與各邊的比值,再根據反三角函數的性質求得角度。
具體步驟如下:
利用三角函數計算角度
假設直角三角形的兩個直角邊分別為a和b,斜邊為c。可以通過以下公式計算角度:
①使用sin函數求角度A:sinA = 對邊a / 斜邊c,查表或計算得出角A的具體度數。
②使用cos函數求角度B:cosB = 鄰邊b / 斜邊c,同樣查表或計算得出角B的度數。由于三角形內角和為180度,可以用180度減去已知角度得到第三個角度。
利用勾股定理計算角度
假設知道直角邊a和斜邊c的長度,根據勾股定理的變形公式,可以得到另一條直角邊b的長度為c的平方減去a的平方后開平方根。然后利用得到的b值,結合已知的a和c值,通過三角函數求得相應角度。此方法更為復雜,但同樣可以準確求得角度。
以上兩種方法均可用于已知直角三角形的三邊長求角度的問題。在實際應用中,可以根據具體情況選擇合適的方法進行計算。
已知△ABC是直角三角形,邊長分別為a、b、c,如果∠C=90°,則∠A+∠B=90°,sinA=a/c,∠A=arcsin(a/c),∠B=90°-∠A。
解答:
可以用余弦定理計算:
a² = b² + c² - 2bc cos A
b² = a² + c² - 2ac cos B
c² = a² + b² - 2ab cos C
由以上公式可得:
cos A = (b² + c² - a²)/(2bc)
cos B = (a² + c² - b²)/(2ac)
cos C = (a² + b² - c²)/(2ab)
解答:
A =arccos [(b² + c² - a²)/(2bc)]
B =arccos [(a² + c² - b²)/(2ac)]
C =arccos [(a² + b² - c²)/(2ab)]
給了直角三角形的三邊長能求角的度數嗎?
能,使用余弦定理。余弦定理是描述三角形中三邊長度與一個角的余弦值關系的數學定理,是勾股定理在一般三角形情形下的推廣。余弦定理是揭示三角形邊角關系的重要定理,直接運用它可解決一類已知三角形兩邊及夾角求第三邊或者是已知三個邊求角的問題,若對余弦定理加以變形并適當移于其它知識,則使用起來更...
知道直角三角形三邊長,問怎么求角度
直角三角形有“勾股定理”---兩直角邊的平方和等于斜邊的平方。13^2+109^2=(13+109)^2-2x13x109≠110^2,所以這樣的三邊長不能成直角三角形。
...已知一個直角三角形三邊的長 怎么能求出他的三個角度的度數呢_百度...
首先看看三邊的關系,只比較三個角的大小很簡單,比較邊的長短就好了。(大邊對大角)再就是看看有沒有明顯的其中一條直角邊是斜邊的二分之一,如果是,那么這條直角邊所對的角就一定是30度。(直角三角形)除了上面那種情況和等腰直角三角形的情況外,就只能像樓上說的那樣,利用三角函數了,用sin...
直角三角形,知道三邊長,怎么求另外兩角角度?
用反三角函數啊!Cos()和Sin(),求出對邊與鄰邊的比值,在三角函數表里查。
知道一個直角三角形三邊的長度,怎么求兩個角度的大小,用公式算?
解:設右上方的斜角為A,則 sinA=1000÷1562=0.64 根據反三角函數得A約為40度。設下方的角為B,則 sinB=1200÷1564=0.76 根據反三角函數得B約為59度。
知道直角三角形的三條邊長,怎么算出兩個內角的度數
答:設這個直角三角形的三條邊和三個內角分別是a,b,c;A,B,C 1.利用正弦定理:a\/sinA=b\/sinB=c\/sinC=2R(R是三角形外接圓半徑)2.余弦定理:a^2=b^2+c^2-2bc*cosA b^2=c^2+a^2-2ac*cosB c^2=a^2+b^2-2ab*cosC
直角三角形,知道三邊長,如何知道其他倆個角的度數,其公式是什么?
把你知道的三個數中其中兩個數根據sin。cos。tan。的個個角度值帶入式子中來觀察就知道多少度了 sin30=1\/2.sin60=√3\/2,sin45°=2分支根號2 cos30=√3\/2,cos60=1\/2.cos45°=(根號2)\/2 tan30=√3\/3,tan60=√3,tan45°=1 cot30=√3,cot60=√3\/3,...
三角函數中知道三條邊長,求角度怎么求 知道一個直角
用余弦定理或正弦定理 a\/sinA=b\/sinB=c\/sinC 這個是正弦定理 余弦定理為:三角形任何一邊的平方,等于其他兩邊的平方和,減去兩邊與他們夾角的余弦的積的2倍 公式為:a2=b2+c2-2bc*cosA
己知直角三角形邊長求直角三角形銳角角度計算公式
分二種情況:一、已知兩直角邊a, b,可用公式:tanA=a\/b 和 A+B=90度。二、已知一直角邊a和斜邊c,可用公式:sinA=a\/c 和 A+B=90度。己知直角三角形邊長求直角三角形銳角角度計算公式 sinA=BC\/AB=500\/1000=1\/2 所以角A=30度 三角形 是由同一平面內不在同一直線上的三條線段‘首尾’...
相關評說:
交口縣動態(tài): ______[答案] 用arc系列函數表示 arcsin1/3 arccos2根號2/3 arctan1/2根號2
交口縣動態(tài): ______[答案] 三邊分別為a,b,c;對應各角分別為A在直角三角形ABC中,C=90° sinA=a/c, cosA=b/c, tanA=a/b
交口縣動態(tài): ______[答案] 首先看看三邊的關系,只比較三個角的大小很簡單,比較邊的長短就好了.(大邊對大角) 再就是看看有沒有明顯的其中一條直角邊是斜邊的二分之一,如果是,那么這條直角邊所對的角就一定是30度.(直角三角形) 除了上面那種情況和等腰直角三...
交口縣動態(tài): ______[答案] 反三角函數 然后用計算器按出來啊!入acrsin0.5=30
交口縣動態(tài): ______ 余弦定理,一邊的平方=另兩邊平方和減去2倍這兩邊的積與兩邊夾角的余弦(a2=b2+c2-2bcCOSA).轉換一下就可以.
交口縣動態(tài): ______[答案] 答:設這個直角三角形的三條邊和三個內角分別是a,b,c;A,B,C 1.利用正弦定理: a/sinA=b/sinB=c/sinC=2R(R是三角形外接圓半徑) 2.余弦定理: a^2=b^2+c^2-2bc*cosA b^2=c^2+a^2-2ac*cosB c^2=a^2+b^2-2ab*cosC
交口縣動態(tài): ______ 可以通過反三角函數求出角的度數:比如正弦=對邊/斜邊,因為你知道三條邊長,就能計算出對邊與斜邊的比值,這個值就是對邊所對角的正弦值.然后通過反三角函數就能得出角度.比如對邊/斜邊=0.5,那么arcsin0.5=30°,剩下的一個銳角就是60°
交口縣動態(tài): ______ 用它的sin或cos值可求,因為這是獨一無二的
交口縣動態(tài): ______[答案] 方法一:海倫公式:已知三角形三邊長分別為a、b、c,則它的面積為:S= p(p?a)(p?b)(p?c) 其中p為半周長:即:p= a+b+c 2 這公式為海倫(Heron)公式 方法二:先根據余弦定理求出某個交的余弦值求正弦值,最后 S=1/2ab*sinC