www.tjgcgs88.cn-狠狠久久亚洲欧美专区不卡,久久精品国产99久久无毒不卡,噼里啪啦国语版在线观看,zσzσzσ女人极品另类

  • <strike id="qgi8o"><td id="qgi8o"></td></strike>
  • <ul id="qgi8o"><acronym id="qgi8o"></acronym></ul>
  • <li id="qgi8o"></li>
    <ul id="qgi8o"></ul>
    <strike id="qgi8o"><rt id="qgi8o"></rt></strike>
    <ul id="qgi8o"><center id="qgi8o"></center></ul>
  • <kbd id="qgi8o"></kbd>

    已知函數(shù)f(x)=3inωxcosωx+1?sin2ωx的周期為2π,其中ω>0.(I)求ω的值及函數(shù)f(x)的單調(diào)遞增區(qū)

    (I)函數(shù)f(x)=


    已知函數(shù)f(x)=3inωxcosωx+1?sin2ωx的周期為2π,其中ω>0.(I)求...
    sin2wx=32sin2ωx+12cos2ωx+12=sin(2ω+π6)+12∵T=2π2ω=2π,∴ω=12∴f(x)=sin(x+π6)+12∴函數(shù)f(x)的單調(diào)遞增區(qū)間為[2kπ-2π3,2kπ+π3],k∈Z;(II)∵f(x)=sin(x+π6)+12∴f(A)=sin(A+π6)+12=32∴sin(A+π6)=1∵π6<A+π6<...

    已知函數(shù)f(x)=3sin(ωx+ϕ)−cos(ωx+ϕ) (0<ϕ<π,ω>0)為...
    3sin(ωx+?)?cos(ωx+?) = 2sin(ωx+??π 6),∵f(x)為偶函數(shù),所以??π 6=kπ+ π 2,又0<?<π,所以?= 2π 3,函數(shù)y=f(x)圖象的兩相鄰對(duì)稱軸的距離為[π\(zhòng)/2],所以周期T=π,于是ω=2,所以,f(x)...

    已知定義在R上的函數(shù)f(x)=asin(ωx)+bcos(ωx),(
    解答:f(x)=asin(wx)+bcos(wx)=[√(a^2+b^2)]{[(a\/√(a^2+b^2)]sin(wx)+[b\/[√(a^2+b^2)]cos(wx)=[√(a^2+b^2)]sin(wx+θ) 其中:tanθ=b\/a T=2π\(zhòng)/w=π 則w=2 -1≤sin(wx+θ)≤1 f(x)最大值=√(a^+b^)=4 sin(wx+θ)=1 ,x=π\(zhòng)/12 ...

    已知函數(shù) f ( x )=3sin( ωx - )( ω >0)和 g ( x )=3cos(2 x +φ...
    由兩三角函數(shù)圖象的對(duì)稱中心完全相同,可知兩函數(shù)的周期相同,故 ω =2,所以 f ( x )=3sin ,那么當(dāng) x ∈ 時(shí),- ≤2 x - ≤ ,所以- ≤sin(2 x - )≤1,故 f ( x )∈ .

    已知f(x)=√3sinωxcosωx-cosωx^2+3\/2,
    f(x)=2coswx*[sin(wx-派\/6)]+3\/2 =sin(2wx-派\/6)+sin(-派\/6)+3\/2 =sin(2wx-派\/6)+1,x屬于R 2,函數(shù)的單調(diào)增區(qū)間由 2k派-派\/2<=2wx-派\/6<=2k派+派\/2 (k為整數(shù)) 確定 當(dāng)w>0時(shí),解得增區(qū)間為[(6k派-派)\/6w,(3k派+派)\/3w]當(dāng)w<=0時(shí),解得增區(qū)間為[(3k派...

    已知函數(shù)f(x)=根號(hào)3sinΩxcosΩx+cos
    f(x)=√3sinωxcosωx+cosωx^2 =√3\/2*sin2ωx+1\/2*(cos2ωx-1)=cosPi\/6*sin2ωx+sinPi\/6*cos2ωx-1\/2 =sin(2ωx+Pi\/6)-1\/2 函數(shù)f(x)的最小正周期為π,所以ω=1

    已知函數(shù)f(x)=(根號(hào)3sinωx+cosωx)cosωx
    解:f(x)=√3sinωxcosωx+cos2ωx=√3\/2sin2ωx+1\/2(cos2ωx-1)=√3\/2sin2ωx+1\/2cos2ωx-1\/2 =sin2ωxcosπ\(zhòng)/6+cos2ωxsinπ\(zhòng)/6-1\/2 =sin(2ωx+π\(zhòng)/6)-1\/2 (1)由正弦函數(shù)的單調(diào)性,當(dāng)-π\(zhòng)/2+2kπ≤2ωx+π\(zhòng)/6≤π\(zhòng)/2+2kπ時(shí),f(x)單調(diào)遞增 所...

    已知函數(shù)f(x)=√3sinωxcosωx+cos2ωx,x∈R,ω>0.(1)...
    解:(1)f(x)=√3sin2ωx+cos2ωx=sin(2ωx+π6)+12,∵x∈R,∴f(x)的值域?yàn)閇-1,1],(2)∵f(x)的最小正周期為π2,∴2π2ω=π2,即ω=2 ∴f(x)=2sin(4x+π6),∵x∈[0,π2],∴4x+π6∈[π6,136π],∵f(x)遞減,∴4x+π6∈[π2,3π2]...

    已知函數(shù)f(x)=根號(hào)3sinwcoswx+sin^2wx-1\/2的周期為π。(1)求f(x)的...
    已知函數(shù)f(x)=(√3)sinωxcosωx+sin2ωx-1\/2的周期為π。(1)。求f(x)的表達(dá)式;(2)。當(dāng)x屬于[0,π\(zhòng)/2]時(shí),求f(x)的最大值和最小值。解:(1)。f(x)=(√3\/2)sin2ωx+(1-cos2ωx)\/2-1\/2=(√3\/2)sin2ωx-(1\/2)cos2ωx =sin2ωxcos(π\(zhòng)/6)-cos2ω...

    己知函數(shù)f(x)=v3sinωxc0sωx+c0s^2ωx,x∈r ω>o,求f(x)的值域,②...
    f(x)=(√3\/2)sin2wx+(1\/2)(1+cos2wx)=sin(2wx+π\(zhòng)/6)+1\/2,它的值域是[-1\/2,3\/2].

    相關(guān)評(píng)說:

  • 良邱17082445464: 已知函數(shù)f(x)=sinωx+cosωx,如果存在實(shí)數(shù)x1
    隴川縣倒輪: ______ d,,f(x1)是最小值,,f(x1+2009)是最大值,,所以周期T等于4*2009,, 打錯(cuò),,周期是2*2009,,選b,,
  • 良邱17082445464: 已知函數(shù)f(x)=3sin(ωx+Ψ),g(x)=3cos(ωx+Ψ),若對(duì)任意的x∈R,都有f(π/6+x)=f(π/6 - x),則g(π/6)=? -
    隴川縣倒輪: ______[答案] 由f(π/6+x)=f(π/6-x)可知f(x)關(guān)于x=π/6為偶函數(shù) 則sin(xπ/6+Ψ)=1=sin(kπ/2) (k為整數(shù)) 則有xπ/6+Ψ=kπ/2 (k為整數(shù)) g(π/6)=3cos(xπ/6+Ψ)=3cos(kπ/2)=0
  • 良邱17082445464: 已知函數(shù)f(x)=√3sin(ωx+φ ) (ωx>0, - π/2/≤φ -
    隴川縣倒輪: ______[答案] 函數(shù)f(x)=√3sin(ωx+φ ) (ω>0,-π/2≤φ
  • 良邱17082445464: 求解一條關(guān)于三角函數(shù)的題目已知函數(shù)f(x)=2cos^2ωx+2sinωxcosωx+1(x∈R,ω>0)的最小值正周期是∏/2.I)求ω的值;II)求函數(shù)f(x)的最大值,并且求使f(x)取... -
    隴川縣倒輪: ______[答案] 根據(jù)倍角公式f(x)=cos2ωx+sin2ωx+2再根據(jù)asinx+bcosx=√(a^2+b^2)sin(x+π/4)f(x)=√2sin(2ωx+π/4)+21)最小正周期T=π/2,2ω=2π/π/2=4,ω=22)f(x)=√2sin(4x+π/4)+2最大值=√2+2,4x+π/4=2kπ+π/2...
  • 良邱17082445464: 有關(guān)高一三角函數(shù)已知函數(shù)f(x)=(根號(hào)3)*sin(ωx+φ) - cos(ωx+φ) (0 -
    隴川縣倒輪: ______[答案] f(x)=√3sin(ωx+φ)- cos(ωx+φ) =2(√3/2sin(ωx+φ)-1/2 cos(ωx+φ) )=2(cosπ/6sin(ωx+φ)-sinπ/6cos(ωx+φ) ) =2sin(ωx+φ-π/6) 這個(gè)函數(shù)是偶函數(shù),則φ-π/6=π/2的奇數(shù)倍,又因?yàn)?
  • 良邱17082445464: 由函數(shù)f(x)= - f(x+1.5)是怎么得出f(x+ 3)=f(x) -
    隴川縣倒輪: ______ f(x)=-f(x+1.5)就是f(x+1.5)=-f(x) 于是f(x+ 3)=-f(x+1.5)=f(x)
  • 良邱17082445464: 已知函數(shù)f(x)=Asin(ωx+φ)的圖像在y軸右側(cè)的第一個(gè)最高點(diǎn)為M(2,2√2) 若f(α)=6√2/5已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<π/2)的圖像在y軸右側(cè)的第一個(gè)... -
    隴川縣倒輪: ______[答案] 前面的計(jì)算都不難,你應(yīng)該會(huì).可能下面的處理你不會(huì): sin(π/8α)+cos(π/8α)=3√2/5 兩邊平方,得: 1+2*sin(π/8α)cos(π/8α)=18/25. 注意到sin(πα/4)=2*sin(π/8α)cos(π/8α). 可得答案-7/25.
  • 良邱17082445464: 高中數(shù)學(xué)必修四= = -
    隴川縣倒輪: ______ 函數(shù)解析式能自己求出來嗎?
  • 良邱17082445464: 一盒中有3個(gè)紅球,5個(gè)白球,采用放回抽樣取2個(gè)球,取到的紅球數(shù)為X,F(x...
    隴川縣倒輪: ______[答案] 由于函數(shù)f(x)=sinωx(ω>0)在[0,1]上單調(diào)遞增,∴ω*1≤ π 2,即 0<ω≤ π 2, 故答案為:(0, π 2].
  • 久久亚洲国产一区二区| 成全我在线观看免费第二季| 久久久久久久精品成人热色戒| 无码视频一区二区三区在线观看| 最近免费mv在线观看动漫| 久久精品熟妇丰满人妻99| 国产不卡免费网站入口| 婷婷五月开心亚洲综合在线| 国产午夜一区二区三区| 国产成人无码精品久|