www.tjgcgs88.cn-狠狠久久亚洲欧美专区不卡,久久精品国产99久久无毒不卡,噼里啪啦国语版在线观看,zσzσzσ女人极品另类

  • <strike id="qgi8o"><td id="qgi8o"></td></strike>
  • <ul id="qgi8o"><acronym id="qgi8o"></acronym></ul>
  • <li id="qgi8o"></li>
    <ul id="qgi8o"></ul>
    <strike id="qgi8o"><rt id="qgi8o"></rt></strike>
    <ul id="qgi8o"><center id="qgi8o"></center></ul>
  • <kbd id="qgi8o"></kbd>

    數(shù)列{an}滿足a1=a2=1,an+an+1+an+2=cos2nπ/3若數(shù)列{an}的前n項和為sn則s2013的值

    解:
    從第一項開始,3個一組,則第n組的第一個數(shù)為a(3n-2)
    a(3n-2)+a(3n-1)+a(3n)
    =cos[2(3n-2)π/3]
    =cos(2nπ -4π/3)
    =cos(-4π/3)
    =cos(4π/3)
    =-cos(π/3)
    =-1/2
    2013÷3=671,即S2013正好是前671組的和。
    S2013=(-1/2)×671=-671/2

    提示:本題關(guān)鍵是找到規(guī)律,3個一組分組后,每組的和都是定值-1/2,剩下的就比較簡單了。

    若有窮數(shù)列a1,a2…an(n是正整數(shù)),滿足a1=an,a2=an-1…an=...
    (3)所有可能的“對稱數(shù)列”是:①1,2,22,2m-2,2m-1,2m-2,22,2,1;②1,2,22,2m-2,2m-1,2m-1,2m-2,22,2,1;③2m-1,2m-2,22,2,1,2,22,2m-2,2m-1;④2m-1,2m-2,22,2,1,1,2,22,2m-2,2m-1.對于①,當(dāng)m≥2008時,S2008=1+2+22+...

    已知數(shù)列{An}滿足a1=1,An=n+An
    應(yīng)該是An=n+A(n-1)A2-A1=2 A3-A2=3 ...A(n)-A(n-1)=n 疊加 A(n)-A(1)=2+3+...+n A(n)=1+2+3+...+n=n(n+1)\/2

    已知數(shù)列{an}滿足a1=1,a2=2,an+2-an=3,求數(shù)列{an}的前n項和
    a1=1,a2=2 a(n+2)-an=3 說明數(shù)列{an}的偶數(shù)項是等差數(shù)列,奇數(shù)項也是等差數(shù)列 故a(2n-1)=1+3(n-1)=3n-2 a(2n)=2+3(n-1)=3n-1 當(dāng)n是奇數(shù)時 Sn=S奇+S偶=[(n+1)\/2]*(a1+an)\/2+[(n-1)\/2]*(a2+a(n-1))\/2 =[(n+1)\/2]*[1+3(n+1)\/2-2]\/2+[(n-1...

    已知遞增等差數(shù)列{an}滿足:a1=1,且a1,a2,a4成等比數(shù)列,求數(shù)列{an}...
    思考過程如下:設(shè)公差為d,那么a2=a1+d=1+d,a4=a1+3d=1+3d,因為三者成等比數(shù)列,于是有a1*a4=a2*a2;代入有:d*d=d,可解的d=1(d>0).于是an的通項為an=n.

    若數(shù)列{an}滿足:a1=m1,a2=m2,an+2=pan+1+qan(p,q是常數(shù)),則稱數(shù)列{a...
    (1)an+2=4an+1-4an的特征根方程為:x2-4x+4=0,解得兩個相等的實根x1=x2=2,…(3分)所以設(shè)通項an=(c1+c2n)?2n,由a1=1,a2=2可得:(c1+c2)?2=1(c1+2c2)?4=2?c1=12c2=0,所以an=2n-1,n∈N*…(6分)(2)由an+2=5an+1-6an可知特征方程為:x2-5x+6...

    已知數(shù)列{an}滿足a1=1,an+1=an+1\/n(n+1),則an=
    a(n+1)=an+1\/[n(n+1)]=an+1\/n-1\/(n+1)a(n+1)+1\/(n+1)=an+1\/n a1+1\/1=1+1=2 數(shù)列{an+1\/n}是各項均為2的常數(shù)數(shù)列。an+1\/n=2 an=2-1\/n

    11.設(shè)數(shù)列{an}滿足 a1=1 a(n+1)=an+n\/3(n1) 則 a(100)=() ?
    a2 = a1 + 1\/3(2) = 1 + 2\/3 = 5\/3 a3 = a2 + 1\/3(3) = 5\/3 + 3\/3 = 8\/3 a4 = a3 + 1\/3(4) = 8\/3 + 4\/3 = 4 a5 = a4 + 1\/3(5) = 4 + 5\/3 = 19\/3 a6 = a5 + 1\/3(6) = 19\/3 + 6\/3 = 25\/3 可以觀察到,數(shù)列的通項公式為:an = ...

    已知數(shù)列{an}滿足a1=1,an+1·an=2^n,數(shù)列的通項是怎么求的?_百度知 ...
    那就在這兒說吧 解答:a1=1 代入a(n+1)*a(n)=2^n ∴ a2*a1=2 ∴ a2=2 ∵ a(n+1)*a(n)=2^n ∴ a(n)*a(n-1)=2^(n-1)∴ a(n+1)\/a(n-1)=2 即 a(n)隔項成等比數(shù)列 (1)n是奇數(shù), n=2k-1 則 an=a(2k-1)=1*2^(k-1)=2^(k-1)=2^[(n+1)\/2-1...

    數(shù)列{an}滿足a1=1,an\/an-1=n\/n-1,求an,請各位幫幫忙啊
    an \/(an-1)=n\/(n-1)a(n-1)\/a(n-2)=(n-1)\/(n-2)a(n-2)\/a(n-3)=(n-2)\/(n-3)...a2 \/a1 =2\/1 這些式子相乘,得 an\/a1=n\/1=n 所以an=n*a1 所以an=n

    數(shù)列{an}滿足a1=1,an+1=(n²+n–)an(n∈n)
    a1=1,a(n+1)=(n^2+n-λ)an a2=(1+1-λ)a1=2-λ (Ⅰ)當(dāng)a2=-1時,2-λ=-1 λ=3 a3=(4+2-λ)a2=(6-3)*(-1)=-3 (Ⅱ)a(n+1)=(n2+n-λ)an a(n+1)\/an=n2+n-λ≠常數(shù) 所以{an}不是等比數(shù)列 (III)設(shè)bn=a(n+1)\/an=n2+n-λ 當(dāng)...

    相關(guān)評說:

  • 宋偉18382543285: 已知數(shù)列{an}滿足a1=1,a2=2,an+2=(an+an+1)/2,n∈N+ -
    鄖縣曲柄: ______ 1.2(an+2)=an+an+1,2(an+2)-2(an+1)=an-an+1,bn+1=-1/2*bn,故{bn}為首項為b1=a2-a1=1,公比為-1/2的等比數(shù)列 2.bn=(-1/2)^(n-1) an=[an-(an-1)]+[(an-1)-(an-2)]+.....+(a2-a1)+a1=(bn-1)+(bn-2)+.....+b1+a1=5/3+(-1)^n*1/3*1/2^(n-2)
  • 宋偉18382543285: 已知數(shù)列{an}滿足:a1=1,a2=x(x∈N*),an+2=|an+1 - an|,若前2014項中恰好含有667項為0,則x的值為---- -
    鄖縣曲柄: ______ 當(dāng)x=1時,數(shù)列數(shù)列{an}的各項為1,1,0,1,1,0,1,1,0,1,1,0…,所以在前2010項中恰好含有2014 3 =6711 3 項為0,即有671項為0;當(dāng)x=2時,數(shù)列數(shù)列{an}的各項為1,2,1,1,0,1,1,0,1,1,0…,所以在前2014項中恰好含有2014?2 3 =6702 3 項為0,即有...
  • 宋偉18382543285: 已知數(shù)列An.滿足a1=1 a2=3.a(n+2)=3a(n+1) - 2a(n) 求數(shù)列 {已知數(shù)列An.滿足a1=1 a2=3.a(n+2)=3a(n+1) - 2a(n) 求數(shù)列 {an}通項公式 -
    鄖縣曲柄: ______[答案] a1=1,a2=3,a(n+2)=3a(n+1)-2an. 法一:待定系數(shù)法. 設(shè)待定系數(shù)s、t,使a(n+2)-sa(n+1)=t(a(n+1)-san). 整理得a(n+2)=(s+t)a(n+1)-stan. 對比原式,得s+t=3,st=2. 解得s=1,t=2或s=2,t=1. 用后一組解,有a(n+2)-2a(n+1)=a(n+1)-2an,a2-2a1=1. ∴數(shù)列{a(n...
  • 宋偉18382543285: 數(shù)列an滿足a1=1,a2=1+2+3,a3=4+5+6,a4=7+8+9+10,則數(shù)列an的前n項和為? -
    鄖縣曲柄: ______[答案] an=(1+2+3……+(n-1)+1)+ +(1+2+3……+(n-1)+n) = 1/2*(n^3+n) (n>1)所以:Sn=1+2+3+………………+(1+2+3……+(n-1)+n) =1/2(1+(1+2+3……+(n-1)+n))*(1+2+3……+(n-1)+n)=1/2*n(n+1)/2*(n(n+1)+1)/2)=n^2(n+1)^2/8...
  • 宋偉18382543285: 已知數(shù)列{an}滿足a1=1,a2=2,an+2=an+1+2an,寫出此數(shù)列的前六項 -
    鄖縣曲柄: ______[答案] a1=1,a2=2,a(n+2)=a(n+1)+2an a1=1 a2=2 a3=a2+2a1=4 a4=a3+2a2=8 a5=a4+2a3=16 a6=a5+2a4=32 如果不懂,請Hi我,祝學(xué)習(xí)愉快!
  • 宋偉18382543285: 已知數(shù)列{an}滿足a1=1,a2=2 -
    鄖縣曲柄: ______ 解:a3=a2/a1 a4=a3/a2=1/a1 a5=a4/a3=(1/a1)/(a2/a1)=1/a2 a6=a5/a4=(1/a2)/(1/a1)=a1/a2 a7=a6/a5=(a1/a2)/(1/a2)=a1 a8=a7/a6=a2 ..... 可以推導(dǎo) a(n+6)=an an是以6為周期的數(shù)列. 所以 a2013=a(335*6+3)=a3 =a2/a1=2/1=2 望采納
  • 宋偉18382543285: 數(shù)列{ an}滿足:a1=1,a2=3/2 -
    鄖縣曲柄: ______ an+2-an+1=1/2(an+1-an) dn+1=dn/2 dn+1/dn=1/2 {dn}是公比為1/2的等比數(shù)列 d1=1/2 {dn}前n項合計為Sn Sn=1-1/2^n Sn=a2-a1+a3-a2+a4-a3……an+1-an=an+1-a1=an+1-11-1/2^n=an+1-1 an+1=2-1/2^n an=2-1/2^(n-1) 令cn=an*bn cn=(3n-2)-(3n-2...
  • 宋偉18382543285: 已知數(shù)列{an}滿足a1=a2=5,an+1=an+6an - 1(n≥2) -
    鄖縣曲柄: ______ 已知數(shù)列{an}滿足 a(1) = a(2) = 5 ① a(n+1) = a(n) + 6a(n-1) (n≥2). ② 求數(shù)列{an}的通項公式 方法1:常規(guī)方法------構(gòu)造法------目標(biāo)是構(gòu)造 a(n+1) - Aa(n) = K * [a(n) - Aa(n-1)] 形式 a(n+1) - 3a(n) = -2a(n) + 6a(n-1) = -2[a(n) - 3a(n-1)] 可見,a(n+1) - ...
  • 宋偉18382543285: 數(shù)列﹛an﹜滿足a1=1,a2=1/2,并且an(an - 1+an+1)=2an+1an - 1(n≥2),則數(shù)列﹛an﹜的第2010項為___ - -
    鄖縣曲柄: ______[答案] 因為an(an-1+an+1)=2an+1an-1(n≥2), 所以變形得2/an=1/an+1+1/an-1 所以﹛1/an﹜為等差數(shù)列 故an=1/n a2010=1/2010
  • 宋偉18382543285: 數(shù)列{an滿足a1=1,a2=2/3,且1/(an - 1)+1/(an+1)=2/an,n≥2,n∈正整數(shù),則an=( ) -
    鄖縣曲柄: ______[答案] 設(shè)1/an=bn則有2bn=(bn-1)+(bn+1)變形得(bn+1)-bn=bn-(bn-1)由此可以看出數(shù)列{bn}是等差數(shù)列公差d=(bn+1)-bn=bn-(bn-1)=````b2-b1=1/a2-1/a1=3/2-1=1/2b1=1/a1=1所以數(shù)列{bn}的通項公式為bn=b1+(n-1)d=1+(n-1)/2=(n+1...
  • 四虎影视免费永久在线观看| 亚洲一区二区国产精品无码| 久久人妻少妇嫩草AV蜜桃| 亚洲国产私拍精品模在线| 国产伦理久久精品久久久久 | 日本一区二区三区视频在线观看| 国产精品无码一级毛片| 国产欧美日韩综合精品一区二区| 国产九九自拍久在线观看| 大地资源影视免费观看|